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9:10 am Classes

Cubic curves. ( , Mark, Tue–Sat)
A curve in the x, y-plane is called a cubic curve if it is given by a polynomial equation f(x, y) = 0 of
degree 3. Compared to conic sections (which have degree 2), at first sight cubic curves are unpleasantly
diverse and complicated; Newton distinguished more than 70 different types of them, and later Pluecker
made a more refined classification into over 200 types. However, as we’ll see, by using complex numbers
and points at infinity we can bring a fair amount of order into the chaos, and cubic curves have many
elegant and excellent properties. One of those properties in particular, which is about intersections,
will allow us to prove a beautiful theorem of Pascal about hexagons and conic sections, and it will also
let us define a group structure on any cubic curve - well, almost. We may have to leave out a singular
(“bad”) point first, but a cubic curve has at most one such point (although it may be well hidden; for
example, y = x3 has one!), and most of them don’t have any. Cubic curves without singular points
are known as elliptic curves, and they are important in number theory, for example in the proof of
Wiles’ Theorem, (AKA “Fermat’s Last Theorem”). However, in this week’s class we probably won’t
look at that connection at all, and no knowledge of number theory (or even groups) is required. With
any luck, along the way you’ll pick up some ideas that extend beyond cubic curves, such as how to
deal with points at infinity (using “homogeneous coordinates”), what to expect from intersections,
and where to look for singular points and for inflection points.

Homework: Recommended

Prerequisites: Mild use of differential calculus, probably including partial derivatives; complex num-
bers; some use of determinants. Group theory not required.

Related to (but not required for): Counting Conics (W2)

Linear Algebra. ( , Yvonne, Tue–Sat)
Linear algebra, the study of vectors and matrices, is one of the most fundamental and useful tools in
mathematics. It appears in nearly every area of pure and applied math, and is also frequently used
in the physical and social sciences. Much of what mathematicians (and physicists, and engineers, and
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economists) do is try to reduce hopelessly complicated non-linear problems to linear ones that can
actually be solved.

One cannot hope to cover all of linear algebra in one week, but this class will give you a basic
background, as well as a preview of some of the most important results. We’re going to start out in
the cartesian plane, where linear algebra springs out of geometry. We’ll define linear maps and give
an intuitive preview of one of the central themes of linear algebra: eigenvectors and their eigenvalues.
Then we’ll leave our two-dimensional pictures behind and introduce the more general concepts of vector
spaces, linear independence, dimension, inner products, orthonormal bases, and diagonalization. (If
you don’t know what any of these words mean, that’s great: come to the class! If you know all of
them, then you probably don’t need this class.)

Later in the class, we’ll introduce a big theorem about eigenvectors of symmetric matrices, the
Spectral Theorem. This result is fundamental to a variety of applications, ranging from population
genetics and image processing to personality psychology. We won’t have a chance to go into these
applications, but campers have done projects in the past on these applications!

Homework: Required

Prerequisites: None

Required for: Galois Theory; Geometry of Spacetime; Category Theory; Compressed Sensing; Graph
Coloring; Counting Conics; Quantum Mechanics; Latin Squares; PS: Polynomials

Mathcamp Crash Course. ( , Paddy, Tue–Sat)
This is a “crash course” in the essential bits of mathematics your other classes will typically assume
familiarity with. In this course, we’ll discuss basic logic and mathematical notation, proof techniques
(induction, contradiction, pigeonhole, and combinatorial), equivalence relations, modular arithmetic,
and the concept of cardinality. If you are new to advanced mathematics or just want to shore up your
foundations, this course is highly recommended!

If you want to test your knowledge of these concepts, try a few of the following problems:

(1) Can you find three statements A1, A2, B such that neither A1 nor A2 are strong enough to
imply B, but A1 and A2 together imply B? How about statements A1, . . . An, B such that no
proper subset of A1, . . . An implies B, but all of A1, . . . An together collectively imply B?

(2) Look at Z/57Z, i.e. the integers modulo 57. Does every nonzero number here have a multi-
plicative inverse? How about for 59?

(3) What is wrong with the following argument (aside from the fact that the claim is false)?
Claim: On a certain island, there are n ≥ 2 cities, some of which are connected by roads.
If each city is connected by a road to at least one other city, then you can travel from any
city to any other city along the roads.
Proof: We proceed by induction on n. The claim is clearly true for n = 1. Now suppose
the claim is true for an island with n = k cities. To prove that it’s also true for n = k+ 1,
we add another city to this island. This new city is connected by a road to at least one of
the old cities, from which you can get to any other old city by the inductive hypothesis.
Thus you can travel from the new city to any other city, as well as between any two of
the old cities. This proves that the claim holds for n = k+ 1, so by induction it holds for
all n. QED.

(4) Prove that there are infinitely many prime numbers.
(5) Explain what it means to say that the real numbers are uncountable. Then prove it.
(6) Explain why (0, 1) and [0, 1] have the same cardinalities. Prove your claim.

If these problems look particularly difficult, you should take this class! (If they don’t, but you’re
still wondering if you should take this class, come and talk to either me or your academic advisor; we
can make recommendations.)

Also: it’s going to be fun! (Yay, fun!)
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Homework: Required

Prerequisites: None

Required for: Everything!

Through the Eyes of a Prime: An Introduction to p-adic Numbers. ( , Holly Swisher,
Tue–Sat)
Integers arise in day–to–day life, and from integers we get fractions. But where do we go from there?
In this class we investigate number systems that are different from the real and complex numbers.
These number systems, called p-adics, are each determined by only one prime number! They have
weird and interesting properties that we will explore.

Ever wondered what the world would look like through the eyes of a prime? Take this class and
find out!

Homework: Recommended

Prerequisites: None required, but a basic idea of limits and modular arithmetic is very helpful.

Related to (but not required for): Real Analysis (W1)

Universal Algebra. ( , Steve, Tue–Sat)
Throughout mathematics, we frequently find ourselves studying classes of algebras (that is, sets with
interesting functions) defined by systems of equations:

• Groups: sets with a constant (zero-ary function) e, binary function ∗, and unary function −1,
satisfying the equations (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity), x ∗ e = e ∗ x = x (identity), and
x ∗ x−1 = x−1 ∗ x = e (inverses). For example, positive real numbers with 1, multiplication,
and reciprocals.
• Rings: two constants, 0 and 1, two binary functions, + and ×, and a unary function −,

satisfying the commutative and associative laws for + and ×, the distributive law (x+y)×z =
x× z + y × z, and the equations saying that 0 and 1 are units for + and ×, and that − is the
additive inverse. For examples, the integers with the usual meanings of 0, 1, +,×, and −.
• Lattices: sets with two binary functions, ∨ and ∧, satisfying the commutativity equations
x ∨ y = y ∨ x and x ∧ y = y ∧ x, the associativity equations (x ∨ y) ∨ z = x ∨ (y ∨ z) and
(x ∧ y) ∧ z = x ∧ (y ∧ z), and the equations a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a (these last two
are called *absorption laws*). For example, sets of real numbers with ∪ and ∩.

A collection of algebras defined by a system of equations — such as groups, rings, and lattices — is
called a variety. Universal algebra is the general study of varieties, and in this class we will survey as
much of the state of the art of universal algbera as we can, giving lots of examples along the way.

We will begin by characterizing when a collection of algebras is a variety; this amounts to studying
certain functions on sets of algebras, which themselves have interesting algebraic structure that we
will investigate! Then we will turn to the structure of individual algebras, and develop the notion of
a congruence lattice. Finally, we will return to looking at varieties, and investigate one of the most
important problems in universal algebra about the structure of varieties — and we will show that this
is intimately connected with the study of congruence lattices of individual algebras. So all the levels
of the hierarchy — algebras, classes of algebras, functions of sets of algebras — are tied together.

Homework: Required

Prerequisites: None

Required for: None

Related to (but not required for): Introduction to Ring Theory (W1); Group Theory (W1); Category
Theory (W2); On Beyond i (W3)
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10:10 am Classes

Bayesian Statistics. ( , Ruthi, Tue–Sat)
Statistics is the science of analyzing data in the presence of uncertainty or with incomplete information.
Since there is little in the world that is certain, and information is always scarce, we humans can’t
go a day without doing some kind of statistics – in our routine cognitive functions, in science, in the
political arena, etc.

On the one hand, good statistics is a way of making our belief about whether something is true
rigorous. On the other hand, statistics can also, through negligence or malice, be manipulated to
show all kinds of not-particularly-true things, which is how we get the famous quote by Mark Twain:
“There are three kinds of lies: lies, damned lies, and statistics.”

In this class, we’ll talk about some of the pitfalls statistics often leads us to fall into, how to think
critically about the data we’re given, and how Bayesian statistics can be a clean way of analyzing our
intuitions. If you’re interested at all in how math can be used in real life, this is the class for you!

Homework: Recommended

Prerequisites: None. Knowing basic probability and/or calculus will be helpful, but is not necessary.

Related to (but not required for): Reasoning about Knowledge and Uncertainty (W2); Knowledge and
the Mind (W2)

Complex Analysis. ( , Kevin, Tue–Sat)
Complex analysis studies functions whose input and output are both complex numbers of the form
z = a+ bi rather than real numbers. Many of the same concepts that come up in calculus extend to
the complex setting, like derivatives and integrals.

But miraculous things happen with complex functions that don’t happen in the real setting! For
example, if a complex function is differentiable in a region, then it’s automatically infinitely differ-
entiable there and hence has a power series expansion. Further, for nice enough functions, integrals
around a closed curve in the complex plane are entirely determined by the function’s behavior near
the points inside the curve where the function is undefined. And these integrals have applications in
all sorts of areas of math—they even help us evaluate difficult real integrals!

We’ll see all of this in the first week, setting the foundation for the next week of the class and other
analytic classes at camp this summer.

Homework: Required

Prerequisites: Single-variable calculus (differential and integral)

Required for: Analytic Number Theory; Polynomial Fermat’s Last Theorem

Related to (but not required for): Real Analysis (W1); Scandalous Curves (W4)

Group Theory. ( , Don, Tue–Sat)
What do the hydrogen atom, crystal structures, and Rubik’s cube have in common? How many
different ways can you paint the sides of a cube with three colors? Why isn’t there a formula for solving
fifth-degree polynomial equations like x5 − x− 1 = 0, even though we have the quadratic formula for
second degree polynomials and there’s even a formula for third and fourth degree polynomials? The
answers to all of these questions can be found in group theory (although some of them are beyond the
scope of this class).

Group theory is useful in, and often critical to understanding, many different areas of mathematics.
This class will be an introduction to the theory of groups. We’ll define groups and related concepts,
like subgroups, cosets, homomorphisms, and learn about the symmetric group, Lagrange’s theorem,
and the first isomorphism theorem.

Homework: Recommended
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Prerequisites: None

Required for: Galois Theory; Category Theory; Evasiveness; How to Cut a Sandwich; Sylow Theorems;
Geometry of Groups; Tilings, Groups, and Orbifolds

How Fast Can We Multiply? ( → , Matt, Fri–Sat)
Way back in elementary school, you (probably) learned how to multiply two numbers. A little thought
should convince you that the amount of time it takes to multiply two n-digit (or n-bit) numbers that
way is roughly proportional to n2, and for a long time people thought that that was about the best
you could do.

Surprisingly, though, we can do better! We’ll see how a pretty simple trick lets us break the
n2 barrier, and how taking the trick further leads us to multiplication based on the Fast Fourier
Transform—an algorithm often used for things like sound processing, but which gives a way to multiply
that is far faster for large numbers.

Homework: None

Prerequisites: None

Infinite Trees. ( , Susan, Tue–Thu)
König’s infinity lemma states that any tree of countably infinite height with finite levels has a countably
infinite branch. Its obvious generalization one cardinality up turns out to be false: there exist trees of
uncountable height with countable levels with no uncountable branches! And this isn’t the weirdest
thing we’ll see in this class. We’ll see trees that may not even exist—we have to go outside of normal
Zermelo-Fraenkel set theory to find them! In this class, you’ll find out what it means for a tree to
be uncountably tall, delve into the mysteries of the Diamond Axiom, and learn how to pronounce the
word Aronszajn.

Note: This class has some really gorgeous tie-ins with the Continuum Hypothesis class that is being
offered in weeks 3 and 4. Both classes are self-contained, but they work extremely well as a pair.
In particular, if you are interested in the Continuum Hypothesis class but a little intimidated by the
four-chili label, this class will give you some practice following the kinds of arguments that come up
a lot in the later class.

Homework: Recommended

Prerequisites: none

Required for: none

Related to (but not required for): The Continuum Hypothesis (W3–4)

Introduction to Graph Theory. ( , Marisa, Tue–Sat)
There is a theorem that says that for any map of, say, countries on your favorite continent, you can
color the countries so that any two countries that share a border (not just meet at a point, but actually
share some boundary) get different colors, and that the number of colors you will need is no more
than 4. (Try inventing a complicated political landscape and coloring: no matter how crazy the scene,
you’ll always be able to color the map with four colors.)

Mathematicians have been pretty convinced about the truth of this Four Color Theorem since the
late 1800s, but despite many false starts, no one gave a proof until 1976, when two mathematicians
wrote a very good computer program to check 1,936 cases. (To this day, we have no human-checkable
proof.)

In this class, we will definitely not prove the Four Color Theorem. We will, however, prove the Five
Color Theorem, which is a whole lot shorter (and which was successfully proven by hand in 1890).
Along the way, we’ll meet many other cool concepts in Graph Theory. You can expect to write a lot
of proofs by induction on the problem sets.
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Homework: Recommended

Prerequisites: None

Required for: Graph Coloring

11:10 am Classes

A Quick Introduction to Number Theory. ( , Mark, Tue–Sat)

How do you find the GCD of two large numbers without having to factor them? What postages can
you get (and not get) if you have only 8 cent and 17 cent stamps available? What is the mathematics
used when you send confidential information, such as your credit card number, over the Internet?
Besides the answers to such questions, number theory offers insight into many beautiful and subtle
properties of our old friends, the integers. For thousands of years, professional and amateur mathe-
maticians have been fascinated by the subject (by the way, some of the amateurs, such as the 17th
century lawyer Fermat and the modern-day theoretical physicist Dyson, are not to be underestimated!)
and chances are that you, too, will enjoy it quite a bit.

Homework: Recommended

Prerequisites: None (modular arithmetic, but I can catch people up on that individually if needed;
may use pigeonhole principle, same comment)

Required for: Problem Solving: Number Theory; Congruent Numbers & Elliptic Curves; Quadratic
Forms in Number Theory; Geometry of Numbers; Error-Correcting Codes; When Factoring Goes
Wrong; Bernoulli Numbers

Related to (but not required for): Quadratic Forms in Number Theory (W2)

Combinatorial Topology. ( , Jeff, Tue–Sat)

Imagine that you wanted to describe a sphere to somebody who lived on a sheet of paper. You
might start by giving them folding instructions:

However, there are several different instructions that you could use to describe the same topological
shape! How could a flatlander know that all of these different folds describe the sphere? As opposed
to this fold, which describes a torus instead...

In combinatorial topology, we describe topological spaces with discrete data called simplicial com-
plexes. With these descriptions, we will start exploring the classical results of topology, including the
Euler characteristic. Then we will turn this model in reverse, using topology to study combinatorics,
and showing how problems involving partially ordered sets and incidence algebras can be described
with shapes. Finally, we will bring together these two languages when exploring discrete Morse theory,
which will give us a glimpse of the methods and intuitions that topologists use today.

Homework: Required
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Prerequisites: None

Related to (but not required for): All of the Topology classes

Models of Computation Simpler than Programming. ( , Pesto, Tue–Sat)
Almost all programming languages are equally powerful—anything one of them can do, they all can.
We’ll talk about two less powerful models of computation—ones that can’t even, say, tell whether two
numbers are equal. They’ll nevertheless save the day if you have to search through 200MB of emails
looking for something formatted like an address.1

This is a math class, not a programming one—we’ll talk about clever proofs for what those models
of computation can and can’t do.

Homework: Recommended

Prerequisites: None

Related to (but not required for): Models of Computation as Strong as Programming (W2)

The Banach-Tarski Paradox. ( , Mark Sapir, Tue–Sat)
About a century ago, Hausdorff discovered that one can cut a 3-dimensional ball into a finite number
of pieces, then rotate the pieces to obtain two balls of the same radius. Shortly after, Banach and
Tarski proved that one can double almost any 3-dimensional body. Moreover, one can transform one
body into another: eg, one can cut an ordinary cat (Garfield) into a finite number of pieces, rearrange
the pieces and obtain 101 dalmatians. Von Neumann connected this paradox with group theory,
thus discovering the subject of amenable groups which is now an important part of both algebra
and analysis. In my course, I will explain Hausdorff’s proof. We shall also discuss the question “If
one wants to double something, how many cuts and rotations does one need?” I will show that this
question is related to (the infinite version of) Hall’s marriage theorem which answers the following
important question: How to pair up infinitely many boys with infinitely many girls so that each girl
likes her partner?

Homework: Recommended

Prerequisites: None

Related to (but not required for): Group Theory (W1)

The Hales–Jewett Theorem. ( , Misha, Tue–Sat)
Imprecisely speaking, the Hales–Jewett theorem is about multidimensional tic-tac-toe. If you tell
me “I want to play with 19 other players on a board with 100 cells to a side”, I can find you some
sufficiently large number of dimensions which will guarantee that the game cannot end in a draw, ie.
no matter how you play, one of you will definitely win.

This theorem can be used to prove results about arithmetic progressions, set families, vector spaces,
et cetera, and is therefore one of the key results in Ramsey theory (the branch of combinatorics that
studies such statements). We’ll see some of these applications in this class.

We’ll also focus on the question: how large is “sufficiently large”? (Spoiler: Large enough for us to
need new notation for really large numbers!) I’ll cover two proofs of the Hales–Jewett theorem, one of
which is a revolutionary improvement on the other even though both involve numbers exceeding the
number of particles in the universe. We’ll discuss lower bounds for this and other Ramsey results as
well.

Homework: Recommended

Prerequisites: None

1xkcd.com/208
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1:10 pm Classes

Introduction to Ring Theory. ( , Daoji Huang, Tue–Sat)
You know integers. You know rational numbers, real numbers, and complex numbers. You also know
polynomials, matrices, and maybe power series. In fact we can call any of these things a ring, which
is an abstract algebraic structure formed by a set of elements with two “well-behaved” operations:
addition and multiplication. Simple as the definition seems, it took mathematicians decades of effort
working with concrete theories in algebraic number theory, algebraic geometry, non-commutative
generalizations of complex numbers, etc. before coming to a clean axiomatic definition of a ring.

Our goal is to develop a basic understanding of this abstract being in algebra–land. You will get a
sense of what questions people typically ask when dealing with an algebraic structure, which will come
in handy when you study other types of structures later. You will also get to see a nonconstructive
proof of the famous Hilbert’s Basis Theorem: we will show that something exists without explicitly
demonstrating how to find it. Its nonconstructiveness was controversial at its time.

Homework: Required

Prerequisites: None

Required for: Category Theory; Galois Theory; When Factoring Goes Wrong

Irrationalia. ( , Aaron Fenyes, Tue–Sat)
At first glance, a single irrational number is a pretty boring thing: just a point on a line. If you look
deeper, though, you’ll find a whole world of information and structure, which can be brought to the
surface in many different ways. One, which you’re probably familiar with, is writing the number as a
decimal. Another, which we’ll focus on in this class, is using the number as the slope of a line on an
infinite chessboard, and watching how the line cuts through the sides of the squares. Exploring these
“cutting sequences” will teach us a lot about irrational numbers, and take us to some very unexpected
places.

This class will emphasize hands-on experimentation, and you’ll discover a lot of the main results
yourselves. You’re very welcome to go “off-road” and explore topics and examples I haven’t planned
on visiting, although the stuff we talk about during class will mostly be scheduled ahead of time.

Homework: Recommended

Prerequisites: None

Required for: Nothing

Point-set topology. ( , Alfonso, Tue–Sat)
You probably know that the sequence

1,
1

2
,
1

3
,
1

4
,
1

5
, . . .

has limit 0.
Here is another sequence

Rock, Paper, Rock, Paper, Rock, Paper, Rock, Paper, ...

What is the limit of this sequence? Does this question even make sense? The answer is, surprisingly,
“yes!” as long as we have a topology in the right sense.

A topology is an object that allows us to talk about limits, convergence, and how close elements
are in arbitrary sets. Sort of.

This course will be Moore Method. This means that I will not lecture and you are not allowed
to use books, the internet or any other resources. I will be giving you definitions and asking many
questions. You will be doing all the work to answer them in the form of daily homework. Class
time will be spent discussing your solutions. So you will be the ones proving all the theorems, and
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sometimes even figuring out what the theorems say in the first place! Be ready to commit daily time
to working outside of class if you do not want to get lost immediately.

Because of the nature of this class, there is homework due on the first day of classes (Tues-
day). Read through and prepare your answers to (most of) the questions in Chapter 1. If you want to
get a sense of the difficulty of the course, please note that Chapter 1 is easier than the rest of it. You
can download the course notes from http://tinyurl.com/MCtopology and I will also have physical
copies with me during opening assembly.

Homework: Required

Prerequisites: You need to be comfortable with quantifiers (∀, ∃). Understanding the ε–δ definition
of limit of a function, while not necessary, will help.

Required for: How to Cut a Sandwich

Related to (but not required for): Scandalous Curves (W4)

Problem Solving: The Probabilistic Method. ( , Tim!, Tue–Sat)
“When you have eliminated all which is impossible, then whatever remains, however improbable, must
be the truth.” — Sherlock Holmes.

This is a good way to way to solve crimes, and a good way to solve math problems. If you need to
prove that some Mathcamp staff member is a spy, calculate the probability that a randomly-chosen
staff member is a spy. If the probability is greater than 0, then you can safely conclude that a traitor
walks among us (even though you might not know who it is).

Perhaps the most suprising thing about this method is that it is actually useful! In fact, the principle
above is all you need to solve this problem:

• Prove that there exists a graph with 1,000,000 vertices such that every set of 40 vertices has a
pair of adjacent vertices and a pair of nonadjacent vertices.

One might be worried that a probabilisty-based proof to this problem might not be air-tight because
it leaves things to chance, but fear not — even though the proof uses probability, the final result is
true with absolute certainty.

In addition to this strategy, we’ll see more probability-based approaches to solving problems (in-
cluding problems whose statements don’t reference probability at all). Part of the class time will
consist of campers working on problems in groups and presenting solutions.

Homework: Required

Prerequisites: None

Related to (but not required for): Other Problem Solving

Real Analysis. ( , Nic, Tue–Sat)
If you’ve taken a calculus class, it might have occurred to you to wonder what a limit really is. Sure,
you can compute them, but what exactly is it that you’re computing? The teacher said something
about getting “closer and closer,” but it’s hard to really wrap your brain around a definition like that.
How much closer do you have to get? When? Where? Why? And I guess a function is “continuous”
if I can draw a graph of it and never have to lift my pen off the paper? And while we’re at it, what
are these “real number” things we keep talking about anyway?

Real analysis is about answering these types of questions and a whole lot more. We’ll start going
back through the stuff you learned in calculus class, giving meaning to definitions and proofs to
theorems, and when we’re done you’ll have seen what it really means for a function to be continuous,
for a sequence or a series to converge, or for a limit to exist.

Homework: Required
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Prerequisites: You should be comfortable with proofs and with the basic language of set theory. In
particular, you should know what it means to prove something by contradiction, to prove a statement
containing the phrase “if and only if”, and what it means to write something like C = {x : x ∈
A and x /∈ B}.
Required for: The Intermediate Value Theorem and Chaos; Scandalous Curves

Related to (but not required for): Through the Eyes of a Prime: An Introduction to p-adic Numbers
(W1); Complex Analysis (W1); Moore Method Point–Set Topology (W1)

Colloquia

The Laws of Thought. (Noah Goodman, Tuesday)
What mathematics can describe the workings of the human mind? Is there a “calculus of thought”?
I will suggest that combining two standard, but ridiculously powerful, ideas from mathematics brings
us close to such a calculus: Probability captures rational reasoning under uncertainty, while lambda
calculus captures universal computation. The combination – stochastic lambda calculus, as realized in
the probabilistic programming language Church – provides a system for modeling many of the subtle
inferences that make human thought so remarkable. I will illustrate this with examples of reasoning
about team games, reasoning about other people’s actions, and more.

The Chebyshev Prime Number Theorem. (Mark Sapir, Wednesday)
There is nothing more basic and important in mathematics than prime numbers, and their distribution
in the set of natural numbers is one of the main mysteries. I will give a completely elementary proof
of the celebrated theorem by Chebyshev that the number of primes below any natural number n
is approximately n

logn (up to a constant multiple). This 19th century result was the first major

breakthrough in the study of prime numbers since Euclid’s proof that the set of primes is infinite. It
led to many other important results such as the Prime Number Theorem and the Riemann hypothesis.

The story of ranks and cranks of partitions. (Holly, Thursday)
Beginning with simple counting and addition, we explore a function called the partition function which
has some surprising arithmetic properties. Underlying these properties are combinatorial objects of
interest: the rank and crank of a partition. We will discuss the history of the rank and crank, how
they have furthered our understanding of partitions, and some recent work about their relationship to
each other.

Hydras. (Susan, Friday)
The Lernean Hydra was a legendary monster with many heads, poisonous breath, and an all-around
bad attitude. The hero Heracles was sent to kill the beast, but found that whenever he cut off one of
its heads, two would grow back in its place. What’s a hero to do? We will attempt to slay a different
kind of Hydra. In the Hydra game, we start with a rooted tree (our Hydra), and in each turn, we
remove a “head”. On the nth turn, n new Hydra heads will grow back in its place. Heracles’s story
has a happy ending—he was able to kill the Lernean Hydra with an extremely clever plan of attack.
What sort of cleverness do we need to kill our Hydra? Come and find out!

Visitor Bios

Yvonne Lai. Mathematical interests: Hyperbolic geometry, geometric group theory (my advisor
would say geometric geometry), slicing and dicing geometric objects
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Hobbies: Biking, spelling things like a Canadian, playing sand volleyball badly
Fun Fact: Did you know there is a sport called kayak polo? It is like water polo, except that all

players are on single person kayaks. My now hometown Lincoln has a club for it and I tried it out this
year!

Nic Ford. Nic recently received his Ph.D. from the University of Michigan and is now working
as a software developer at Jane Street Capital (which is hosting several former campers as interns
this summer!). When he was still doing math research, it was in combinatorial algebraic geometry,
specifically Schubert calculus, which he still thinks is pretty great. He was a Mathcamp mentor for
four years, and very much regrets not being able to stay for the full summer this time.

Daoji Huang. I’m about to enter my 2nd year of PhD in math at Cornell University. While I have
special feelings towards algebra, I enjoy learning almost all kinds of math and listening to other people
talking about their math. Non-math things I care a lot about include coffee, doing pottery, the game
of go, and trees.

Mark Sapir. Mark Sapir is a math professor at Vanderbilt University, interested in algebra (specif-
ically, algorithmic, geometric and probabilistic invariants of groups, semigroups and algebras). He
earned his PhD from Ural State University in the USSR. He’s the creator of http://www.math.vanderbilt.edu/ msapir/tt.html
, wise words from a math professor. His older daughter Jenya is a Mathcamp alumna and newly-minted
math PhD and his son Yasha is visiting Mathcamp with him.

Noah Goodman. Once upon a time, Noah Goodman was a math graduate student at UT Austin,
studying geometric topology. He came to Mathcamp as a mentor from 1999 to 2001, where he met
Mira’s husband Josh Tenenbaum (whom you will also get to meet in Week 2). Josh introduced Noah
to cognitive science, the mathematical study of the mind, and turned him over to the dark side:
after getting his PhD, Noah left pure math and came to work in Josh’s lab as a postdoc (but not
before spending a couple of years as a real-estate developer in Chicago). Now Noah is a professor of
psychology, computer science, and linguistics at Stanford, doing research on computational models of
cognition and the integration of probability and logic. He’s only around for a day this year (just giving
a colloquium, not teaching any classes), but he loves hanging out with Mathcampers. Come and talk
to him soon, before he disappears!

Holly Swisher. Holly Swisher studies number theory and combinatorics. She is particularly inter-
ested in cool things like partition theory, modular and mock modular forms, and hypergeometric series.
Partition theory deals with counting ways to add up positive integers to get a specific positive integer.
Sounds easy, right? Not always! This topic includes the study of various partition functions, their
combinatorial properties, congruences, asymptotics, and connections with modular forms. (Modu-
lar forms were involved in the famous proof by Wiles et al of Fermat’s Last Theorem through their
connections with elliptic curves!)

Matt Wright. Matt recently finished grad school (studying logic, with a focus on computability
theory) and has now moved on to being a software engineer at Dropbox. A mentor last summer and
a camper many, many summers ago, Matt is really excited to be back visiting Mathcamp!


