
Crash Course on Combinatorial Game Theory
for the Mathcamp 2019 Qualifying Quiz

The purpose of this brief primer on combinatorial game theory is to introduce you to the techniques
needed to solve Problem #6 on the Mathcamp 2019 Qualifying Quiz. If you already know about Nim
addition, the MEX rule, and the Sprague-Grundy Theorem, you can skip this crash course and proceed
directly to the problem.

We created this primer to make your life easier, but you are also welcome to learn this material from
any other sources: it is quite standard and can be found in many books and online references. Just
make sure to cite all the sources that you use (other than this primer) in your solutions.

The suggested exercises in this primer are there to help you learn. Please do not submit solutions to
these exercises as part of your solution to Problem #6: we will not read them.

You may ask other people for help with understanding the general concepts in this document, as long as
you are not asking about Problem #6 itself. Conversely, please do not ask clarification questions
on this primer, or general questions on combinatorial game theory, through the Qualifying
Quiz hotline (quiz19@mathcamp.org). That email address is reserved only for questions about the
Quiz itself.

Good luck, and enjoy!

1 A Mathematical Introduction to Games

The games we are interested in

Definition 1.1. A combinatorial game is a game in which two players take turns making moves;
both of them have complete information about what has happened in the game so far and what each
player’s options are from each position.

Common examples of combinatorial games include chess, go, and tic-tac-toe. Rock-Paper-Scissors is
not a combinatorial game, since the two players move simultaneously. Most card games are also not
combinatorial, since usually a player does not know what cards her opponent has or what cards she
herself will draw on the next turn.

Combinatorial Game Theory is a broad field of mathematical research. In this crash course, we will
only deal with a particularly simple type of combinatorial games, satisfying the following conditions:

• Standard play. This means that the winner and loser are determined based on who runs out of
moves first. In standard play, the first player who cannot make a valid move on their turn is the
loser. In particular, there are no ties.

• Finiteness. This means the game is guaranteed to end: no matter what the players do, at some
point one of them will be unable to move and will lose the game.

1

mailto:quiz19@mathcamp.org

• Impartiality. This means that the moves available to each player from each position are exactly
the same. For example, chess is not an impartial game, since one player can only move the white
pieces, while the other can only move the black pieces. On the other hand, Candy Split, as
described in Problem #6 of the Mathcamp 2019 Qualifying Quiz, is impartial.

We will refer to combinatorial games that satisfy these three conditions as FISP games (FISP = finite,
impartial, standard play).1 So far, Candy Split is our only example of a FISP game; we will see more
examples soon.

The game graph

Let us denote the position of Candy Split with piles of size X and Y (where X ≤ Y) by CANDY(X, Y).

To any position of a FISP game, we can associate a game graph that shows all the ways the game can
proceed starting from that position. The vertices of the game graph are positions of the game, and the
edges are valid moves. For instance, Figure 1 shows the game graph for CANDY(3, 4).

Figure 1: The game graph for CANDY(3, 4)

Since FISP games are finite, a game graph will always contain only a finite number of vertices and no
loops.

Definition 1.2.

• A terminal position in a game is a position from which there are no valid moves. Every path
through the game graph ends in a terminal position.

• The height of a position in a FISP game is the length of the longest path in its game graph.
(Terminal positions have height 0.)

Every FISP game has a terminal position; some games have more than one. In Candy Split, the only
terminal position is CANDY(1, 1). From Figure 1, we see that the height of CANDY(3, 4) is 3.

1This is not standard terminology. Most of the time when one talks about FISP games, finiteness and standard play
are taken for granted, so the games are called simply “impartial”.

2

N-positions and P-positions

The most important question you can ask about a position in a FISP game is: “Is it better to go first
or second?” We’d like to be able to classify all positions into two categories:

Definition 1.3.

• A position is an N-position (or “has status N”) if the player whose turn it is to move (the “Next”
player) has a winning strategy. In other words, assuming that the Next player plays correctly, she
can win no matter what her opponent does.

• A position is a P-position (or “has status P”) if the player whose turn just ended (the Previous
player) has a winning strategy. (If it’s the beginning of the game and there was no previous move,
then the Previous player is the player who goes second.)

Intuitively, N -positions are ones from which you want to go first; P -positions are ones from which you
want to go second. Here are some simple examples:

• CANDY(1, 2) is an N -position: the Next player can immediately move to the terminal position
CANDY(1, 1) and win the game.

• CANDY(3, 3) is a P -position: the only thing the Next player can do is go to CANDY(1, 2), from
which the Previous player (who will now be in the role of Next) can win.

Obviously, a position can’t be both N and P , since it’s not possible for both players to have a winning
strategy. But how can we be sure that every position is either N or P? Perhaps there are positions
from which neither player has a fail-safe strategy?

Lemma 1.1. In any FISP game,

(a) A position from which you can move to a P -position is an N-position. (There may also be moves
to other positions, but they don’t matter.)

(b) A position from which the only moves are to N-positions is a P -position.

Proof:

(a) When you move to a P position, it is now your opponent’s turn, and you become the Previous
player. By definition of P , you have a winning strategy from that P -position.

Now consider your original position: if you are the Next player and you can move to a P -position,
then you have a winning strategy, so your current position is an N -position.

(b) Say you are the Next player. If you can only move to N -positions, this means that whatever you
do, you opponent (who becomes Next after your turn) can win the game. This means your current
position is a P -position.

Theorem 1.1. Every position in a FISP game is either N or P .

3

Proof: We use strong induction on height h.

• Base Case: h=0. A position of height 0 is a terminal position. The Next player has just lost, so
it’s a P -position.

• Inductive step: Suppose all positions of height less than h have been labeled N or P . Given a
position of height h, all moves from it must be to positions of height less that h. We can therefore
determine its N/P status according to the criteria in Lemma 1.1. QED

The proof of Theorem 1.1 suggests an algorithm for determining the N/P status of any position g in a
FISP game:

• Draw the game graph for g and label all positions of height 0 as P .

• Once you’ve labeled all positions up to height h, label all positions of height h according to the
rules of Lemma 1.1.

• Keep incrementing h until you get to your starting position g.

Suggested exercise 1.1. Use this algorithm and the game graph in Figure 1 to determine the N/P
status of CANDY(3, 4). Then check your answer below.

Answer: To find the N/P status of CANDY(3, 4), we label the positions in its game graph in the
following order (Figure 2).

• Height 0: CANDY(1, 1) is P , since it’s terminal.

• Height 1: CANDY(1, 2) and CANDY(2, 2) are N , since you can move from them to CANDY(1, 1).

• Height 2: CANDY(1, 3) is P , since the only move from it is to CANDY(1, 2), which is N .

• Height 3: CANDY(3, 4) is N , since you can move from it to CANDY(1, 3), which is P . The fact
that you can also move to two other positions, both of which are N , is irrelevant. (Those are bad
moves that a player who knows how to play the game would never make.)

Solving a FISP game

Solving a game means figuring out how to play it optimally from any position. For a FISP game,
knowing the N - and P -positions is all you need. The optimal strategy is:

(a) If you’re in an N -position, there must be a P -position you can move to. Do that!

(b) If you’re in a P -position, nothing you can do can help you win unless your opponent makes a
mistake. So make whatever moves you want, but keep watching: if your opponent messes up and
moves to an N -position, go to (a).2

2Actually, the advice in part (b) is outside the realm of mathematics: when you study combinatorial game theory, you
always assume that both players play perfectly. But in practice, when you’re playing with an actual human, watching for
errors is essential!

4

Figure 2: Figure 2: N and P positions for CANDY(3, 4)

Here is one more example of a simple FISP game for you to practice on. In this game, you start with
a pile of X stones. On her turn, a player must remove 2, 3, or 5 stones from the pile. Whoever can’t
move loses.

This game is part of a large class of games called “take-away games”, so we will call it T. We will
denote the position of T with X stones by TX . This time, instead of drawing the full game graph for
each position, let’s just make a table of values of X and not put in the edges. It is easy to keep track
of what the valid moves are from each position; putting in all the arrows would only make the picture
messier.

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
status of TX P P N N N N N P P N . . .

The first few entries in the table above were computed as follows:

• The terminal positions are T0 and T1; both are P -positions.

• T2, T3, and T5 are N -positions, since you can move from them to the P -position T0.

• T4 and T6 are N -positions, since you can move from them to the P -position T1.

• From T7, you can only move to T2,T4, or T5. Since these are all N -positions, T7 must be a
P -position.

• From T8, you can only move to T3,T5, or T6. Since these are all N positions, T8 must be a
P -position.

• From T9 you can move to T7, which is a P -position, so T9 is an N -position.

Note that we did not have to fill in the table strictly in order of height. To find the N/P status of
position g, you don’t actually need to know the status of all positions of height less than g; you just
need to know the status of all the positions you can move to from g. The concept of height is useful for
proofs, but rarely referred to in actual calculations.

Suggested exercise 1.2. Fill in the missing values in the table before you read on.

5

The table looks periodic, and it’s not hard to prove that the pattern does indeed continue. Thus we
have found a strategy for this game: always move to a number that is 0 or 1 mod 7. If you can’t, then
you’ve lost.

Suggested exercise 1.3. Use the method developed so far to solve Candy Split, i.e. to figure out which
positions are N and which are P . Instead of a one-dimensional table, you will need a two-dimensional
table where the (X, Y) entry is the N/P status of CANDY(X, Y). As you fill out the table, look for
patterns; see if you can spot a pattern that makes the strategy for the game easy to summarize in a few
sentences. Then see if you can prove it.

Addition of games

The tools that we currently have are enough to solve Candy Split. But Problem #6 asks you to play a
much more complicated game: three games of Candy Split at the same time! This too is a FISP game,
so in theory you could approach it as above. However, it will get very ugly very fast; even just recording
the N/P status of each position of this game would require a six-dimensional table. Fortunately, there
is a better way.

Definition 1.4. Given two FISP games, G1 and G2, we define their sum, G1 + G2, to be a FISP game
with the following rules:

• A position of G1 + G2 consists of a position g1 of the game G1 and a position g2 of the game G2.
We refer to this position as g1 + g2.

• A valid move from g1 + g2 is either a valid move in G1 from g1 to some other position g′1 or a valid
move in G2 from g2 to some other position g′2. The resulting position of G1 + G2 is then either
g′1 + g2 or g1 + g′2.

• A player loses the game G1 + G2 if it is their turn and they are unable to move. In other words,
they have no valid moves in either G1 or G2.

For example, suppose G1 is Candy Split and G2 is the T game. One possible position of G1 + G2 is
CANDY(2, 3)+T8. Possible moves from this position include CANDY(1, 2)+T8 and CANDY(2, 3)+T6.
However, since you can only move in one of the games, you cannot move from CANDY(2, 3) + T8 to
CANDY(1, 2) + T6.

The order of addition does not matter: there is no difference between G1 + G2 and G2 + G1. Similarly,
(G1 + G2) + G3 clearly has the same set of positions and moves as G1 + (G2 + G3). In other words,
addition of games is commutative and associative. These properties will come in very handy later on.3

How does addition of games interact with N/P status? Here are two basic and important theorems:

Theorem 1.2. For any position g in any FISP game, g + g is always a P -position.

3Technically, we haven’t defined what it means for two games to be “the same”. For example, if you and I play Candy
Split with chocolates and our friends play it with marshmallows, are we playing the same game? If we wanted to be really
precise, we would define isomorphism of games via isomophism of their game graphs – but that would take us too far
afield. Hopefully the fact that G1 + G2 and G2 + G1 are the same game for all intents and purposes is clear enough that
you can take it on faith.

6

Theorem 1.3. If g is a P -position, then for any other position h in a FISP game H, h + g has the
same N/P status as h.

Suggested exercise 1.4. Try to prove these two theorems yourself before reading on.

Proof of Theorem 1.2:

We need to show that the second (“Previous”) player has a winning strategy from g + g. Indeed, she
can always win by imitating her opponent’s moves. For instance, if her opponent plays in the first copy
of g and moves to g′+g, she can make the same move in the second copy of g and move to g′+g′. With
this strategy, whatever moves her opponent makes, the second player is guaranteed to be able to make
a valid move in response, by copying. Thus it will have to be her opponent who eventually runs out of
moves and loses the game. QED

Proof of Theorem 1.3: First, suppose h is a P -position. Then the second (Previous) player has a
winning strategy from each of h and g individually. She can combine these into a strategy for h + g: if
her opponent moves in h, she responds according to her strategy for h; if her opponent moves in g, she
responds according to her strategy for g. Thus, for any move her opponent makes, the second player
is guaranteed to have a response. Her opponent will run out of moves first and lose. Thus h + g is a
P -position.

Now suppose h is an N -position. Then, by Lemma 1.1, there is a move from h to some P -position h′.
Since h′ and g are both P -positions, so is h′ + g (as we just proved above). Since you can move from
h + g to the P -position h′ + g, Lemma 1.1 implies that h + g is an N -position. QED

One way to summarize Theorem 1.3 is:

N + P = N, P + P = P.

But what about N+N? The answer is: it could be either! Here are two examples of sums of N -positions,
with different results:

• CANDY(2, 2) + CANDY(1, 2): This is a P -position, since there is only one valid move from each
of the summands. The first player will move in one of the games, the second player will move in
the other, and that’s it. Second player wins.

• CANDY(3, 4) + CANDY(1, 2): This is an N -position: you can move from it to CANDY(2, 2) +
CANDY(1, 2), which we just showed is P .

In other words, P and N are good enough if you are playing just one game. But if we want to understand
how games behave under addition, we need a finer classification.

2 Nim

The key to understanding addition of FISP games turns out to reside in one particular game – the most
famous FISP game of all.

7

The rules of Nim

The most common version of Nim is 3-pile Nim. Two players start with three piles of stones. (These
piles are often called nimheaps.) On her turn, a player must remove a nonzero number of stones from
any one pile. (In particular, she is allowed to remove all the stones from a pile.) As usual, whoever
can’t move loses, i.e. whoever takes the last stone wins.

Suggested exercise 2.1. Satisfy yourself that Nim is indeed a FISP game. You may also want to play
a few games (with small nimheaps) to get the hang of it.

Notice a key difference between Nim and Candy Split: in Candy Split, a single move affects both piles
of candy. In Nim, a move affects only one pile at a time. The rule that a player must choose one pile
and move in that pile should remind you of something. In fact, 3-pile Nim is precisely the sum of three
separate games of 1-pile Nim!

Of course, 1-pile Nim on its own is an extremely boring game. A single nimheap of size X, which we
denote by X∗, is very easy to analyze:

• X∗ is an N -position if X > 0. (The Next player can win in one move by removing all the stones
in the heap.)

• X∗ is a P -position if X = 0.

And yet, when you add three games of 1-pile Nim together, you get something quite interesting and
complicated!

A few words on notation:

• We will denote a Nim position with heaps of size X, Y , and Z by X∗ + Y ∗ + Z∗. As usual with
addition of games, order does not matter.

• If, on her turn, a player removes an entire heap (say Z∗), we will skip the resulting 0∗ (the empty
heap) and record what is left as just X∗ + Y ∗. Obviously, leaving out the empty heap makes no
difference to the game.

• We will only use 0∗ when there are no other piles. This is the terminal position of every game of
Nim, regardless of how many piles you start with.

Suggested exercise 2.2. Figure 3 shows the full game graph of the position 1∗ + 2∗ + 3∗. Label all
the positions in the graph with N and P to deduce that 1∗ + 2∗ + 3∗ is a P -position.

The Nim table

As you can see in Figure 3, the full game graph for 3-pile Nim can get very complicated, even when
all the heaps are small. Fortunately, the task of figuring out the P - and N -positions of 3-pile Nim is
greatly simplified by the following theorem:

8

Figure 3: The game graph of 1∗ + 2∗ + 3∗

Theorem 2.1. For any two numbers X and Y , there exists at most one number Z such that X∗+Y ∗+Z∗

is a P -position.

Proof: Suppose X∗ + Y ∗ + Z∗1 and X∗ + Y ∗ + Z∗2 are both P -positions with Z1 > Z2. Note that you
can move from the former to the latter by taking Z1 − Z2 stones from Z∗1 . But there cannot be a move
from a P -position to a P -position, by Lemma 1.1. Thus we obtain a contradiction. QED.

Note that we have not shown that a number Z satisfying the condition of the theorem actually exists;
we only know that, if it exists, it must be unique. Still, we can try constructing a table whose entry in
row X and column Y is the unique value of Z (if one exists) such that X∗ + Y ∗ + Z∗ is a P -position.
If we can construct such a table, we will know all the P -positions in Nim, which is all we need for a
winning strategy.

We denote the entry in row X and column Y by [X, Y]. Here are some entries that we can fill in right

9

away:

• By Theorem 1.2, X∗+X∗ is a P -position for all X. We can think of this as X∗+X∗+ 0∗. Thus,
for all X, we have

[X,X] = 0, [X, 0] = [0, X] = X

• By analyzing Figure 3, we can show directly that 1∗ + 2∗ + 3∗ is a P -position. Thus:

[1, 2] = [2, 1] = 3, [2, 3] = [3, 2] = 1, [1, 3] = [3, 1] = 2.

Here is the table with what we know so far:

0 1 2 3 4 5 6 7 8 . . .

0 0 1 2 3 4 5 6 7 8 . . .
1 1 0 3 2 . . .
2 2 3 0 1 . . .
3 3 2 1 0 . . .
4 4 0 . . .
5 5 0 . . .
6 6 0 . . .
7 7 0 . . .
8 8 0 . . .
...

...
...

...
...

...
...

...
...

...
. . .

Let’s try to fill in some more values. For instance, what can we say about [1, 4]?

• [1, 4] cannot be any of the values that already appear in Row 1. For example, since [1, 2] = 3, we
can’t have [1, 4] = 3, since this would mean that both 1∗+2∗+3∗ and 1∗+4∗+3∗ are P -positions,
contradicting Theorem 2.1.

• For the same reason, [1, 4] cannot be any of the values that already appear in Column 4.

• We conclude that [1, 4] cannot be any of the numbers 0, 1, 2, 3, or 4. So maybe it’s 5?

Suggested exercise 2.3. Convince yourself that [1, 4] is indeed 5, by checking that all possible moves
from 1∗ + 4∗ + 5∗ lead to N -positions. Don’t draw the game graph: everything you need should be
deducible from what’s already in the table!

If you don’t understand how to do this exercise, don’t worry: it just a special case of the proof of
Theorem 2.2, which is explained below.

The MEX rule

From the previous example, you might be tempted to guess that [X, Y] has to be greater than all the
numbers that previously appeared in row X or column Y . Perhaps it is the first number that is greater
than all of them?

But then you notice that [1, 5] = 4, even though 5 has already appeared in Row 1. So it’s not quite
that simple ... but close.

10

Definition 2.1. Let S be a set of nonnegative integers. MEX(S) is defined to be the smallest nonneg-
ative integer that does not appear in S. (MEX stands for “minimal excluded”.)

For instance:

MEX(0, 1, 2, 3, 4) = 5

MEX(0, 1, 2, 3, 5) = 4

MEX(1, 2, 3, 4, 5) = 0

Theorem 2.2 (“the MEX rule”). For all integers X, Y ≥ 0,

[X, Y] = MEX ({[X ′, Y] : X ′ < X} ∪ {[X, Y ′] : Y ′ < Y })

In other words, [X, Y] is the smallest integer that does not appear directly above or to the left of its
position in the table.

Suggested exercise 2.4. To make sure you understand the statement of the theorem, go back and
finish filling out the table on the previous page. Then compare your answer to the full table as shown
below. You can do this either before or after you read the proof.

Proof of Theorem 2.2: Given X, Y ≥ 0, let

M = MEX ({[X ′, Y] : X ′ < X} ∪ {[X, Y ′] : Y ′ < Y }) ,

as in the statement of the theorem. We want to show that X∗ + Y ∗ + M∗ is a P -position.

Consider the three ways that the Next player can move from X∗ + Y ∗ + M∗:

• Suppose she moves to X∗1 + Y ∗ + M∗ with X1 < X. By definition of MEX, M 6= [X1, Y]. Thus
X∗1 + Y ∗ + M∗ is not a P -position, so it is an N - position.

• Suppose she moves to X∗ + Y ∗1 + M∗ with Y1 < Y . The same argument as above shows that this
is an N -position.

• Finally, suppose she moves to X∗ + Y ∗ + M∗
1 with M1 < M . Then, by definition of MEX, M1

must be an element of the set

{[X ′, Y] : X ′ < X} ∪ {[X, Y ′] : Y ′ < Y }.

Without loss of generality, suppose M1 = [X1, Y] with X1 < X. Then X∗1 + Y ∗ + M∗
1 is a

P -position, which means that X∗1 + Y ∗ + M∗ must be an N -position by Theorem 2.1.

We have shown that all possible moves from X∗ + Y ∗ + M∗ lead to N -positions. Thus X∗ + Y ∗ + M∗

itself must be a P -position, so [X, Y] = M . QED

Here is the complete Nim strategy table for X, Y ≤ 8, constructed recursively using Theorem 2.2:

11

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8
1 1 0 3 2 5 4 7 6 9
2 2 3 0 1 6 7 4 5 10
3 3 2 1 0 7 6 5 4 11
4 4 5 6 7 0 1 2 3 12
5 5 4 7 6 1 0 3 2 13
6 6 7 4 5 2 3 0 1 14
7 7 6 5 4 3 2 1 0 15
8 8 9 10 11 12 13 14 15 0

Using the Nim table

The Nim table tells us everything we need to know about how to play 3-pile Nim. For instance, suppose
you and I start playing from the position 3∗ + 4∗ + 6∗. I generously let you choose whether to go first
or second.

• Should you go first or second? From the table, you see that [3, 4] 6= 6, so 3∗ + 4∗ + 6∗ is an
N -position. You should go first.

• How should you play? Recall that the winning strategy is always to move to a P -position. Since
you’re at an N -position, there must be at least one such move available, but it might take you a
few tries to find it.

For instance, since [3, 4] = 7, you might try to move to 3∗ + 4∗ + 7∗. But you can’t go from 6∗

to 7∗: you can only remove stones from piles, not add them. Here the Nim table tells you that
removing any number of stones from the 6∗ heap is a bad move.

Similarly, since [3, 6] = 5, you have no good moves from the 4∗ heap (since 5 > 4). Fortunately,
[4, 7] = 2, and 2 is less than 3. Thus the only good move from this position is to remove one stone
from the 3∗ heap, moving from 3∗ + 4∗ + 6∗ to 2∗ + 4∗ + 6∗.

Suggested exercise 2.5. Teach a friend to play Nim without teaching them the strategy. Play a bunch
of games with up to 8 stones in each pile, and impress them by beating them every time! (You can even
let them choose whether to go first or second. They might get lucky and make the right choice initially,
but if they don’t know how to play, they’ll almost certainly make a mistake at some point by moving
to an N -position. From there, you can win.)

Nimsum

Suppose we want to compute [2019, 2020]. Right now, the only way we know how to do this is by
constructing the whole 2019×2020 Nim table using the MEX rule. This seems really wasteful! Wouldn’t
it be nice to have a closed formula for [X, Y] that did not require knowing the entire table up to that
point?

12

You have probably already noticed some interesting patterns in the Nim table, involving 2× 2 squares,
4 × 4 squares, 8 × 8 squares, etc. The challenge is to describe this pattern precisely, so that we can
derive a formula for [X, Y] and then try to prove it.

Here is an extremely useful problem-solving strategy: when you see a pattern involving powers of 2,
rewrite all your numbers in binary (base 2). This usually makes the pattern much easier to describe
and to understand.

In binary, our Nim table looks like this:

0 1 10 11 100 101 110 111 1000

0 0 1 10 11 100 101 110 111 1000
1 1 0 11 10 101 100 111 110 1001

10 10 11 0 1 110 111 100 101 1010
11 11 10 1 0 111 110 101 100 1011

100 100 101 110 111 0 1 10 11 1100
101 101 100 111 110 1 0 11 10 1101
110 110 111 100 101 10 11 0 1 1110
111 111 110 101 100 11 10 1 0 1111

1000 1000 1001 1010 1011 1100 1101 1110 1111 0

Suggested exercise 2.6. If you want to figure out the formula for yourself, this is your chance! Stare
at the table until you see the pattern. Or you can just read on.

The pattern that emerges from the table is as follows: to compute [X, Y], first write X and Y in binary.
If one of them has fewer digits, pad it with 0’s until the two numbers are the same length. Now simply
add the individual digits of X and Y mod 2. The difference between this and normal addition is that
we are adding without carry. The resulting number is [X, Y].

For instance, we can see in the table that

5 = 1012

3 = 0112

[5, 3] = 1102 = 6

Assuming this pattern holds, we can now easily compute:

2019 = 111111000112

2020 = 111111001002

[2019, 2020] = 1112 = 7

This operation of adding binary digits mod 2 without carry is called nimsum (although it also occurs
in many mathematical contexts other than Nim). To distinguish it from regular addition, we denote it
by ⊕. Note that X ⊕X = 0 for all X. It is also easy to check that ⊕ is commutative and associative.

Suggested exercise 2.7. Convince yourself that X ⊕ Y = Z if and only if X ⊕ Y ⊕ Z = 0.

We are now ready to state and prove our formula for [X, Y]:

13

Theorem 2.3. X∗+Y ∗+Z∗ is a P -position if and only if X⊕Y⊕Z = 0. In other words, [X, Y] = X⊕Y .

Proof: The proof is by strong induction on X + Y + Z. (Note that this is the usual sum of integers,
not nimsum.)

The theorem is clearly true when X + Y + Z = 0. Now suppose the theorem holds for all triples such
that X + Y + Z < n, and consider a position X∗ + Y ∗ + Z∗ where X + Y + Z = n.

Suppose first that X ⊕ Y ⊕ Z = 0. We need to show that in this case, X∗ + Y ∗ + Z∗ is a P -position.
A move from this position involves reducing the value of one of the numbers – say going from X to
X̃ < X. But changing even one digit of X will result in the nimsum no longer being 0 at that digit,
so X̃ ⊕ Y ⊕ Z 6= 0. Since X̃ + Y + Z < n, we can apply the inductive hypothesis to conclude that
X̃∗ + Y ∗ + Z∗ is an N -position. This shows that all moves from X∗ + Y ∗ + Z∗ are to N -positions, so
X∗ + Y ∗ + Z∗ itself is a P -position.

Now suppose that X ⊕ Y ⊕ Z 6= 0. We will show that this is an N -position by finding a move to a
P -position.

Denote the binary digits of X by X1, X2, . . . Xn, and similarly for Y and Z. (Thus Xn is the 1’s digit,
Xn−1 is the 2’s digit, etc.) Find the smallest m such that Xm + Ym + Zm 6= 0 mod 2. At least one of
Xm, Ym, and Zm is not zero; WLOG, say Xm = 1.

Let X̃ be the integer with binary expansion

X̃i =

Xi if i < m
0 if i = m
Yi + Zi mod 2 if i > m

In other words, we are modifying all the digits Xi, Xi+1, . . . , Xn to make the nimsum work out correctly.
By construction, X̃⊕Y ⊕Z = 0 and X̃ < X. By the inductive hypothesis, X̃∗+Y ∗+Z∗ is a P -position,
so X∗ + Y ∗ + Z∗ is an N -position, as required. QED

Suggested exercise 2.8. Although we were just looking for a formula for 3-pile Nim, we get the
formula for k-pile Nim for free! Generalize Theorem 2.3 to any number of nimheaps and prove it. (It is
almost word for word the same proof as above.)

3 The Sprague-Grundy Theorem

At this point you may be wondering: why are we talking so much about Nim? I am trying to solve a
problem about Candy Split. How is Nim going to help me?

Good question. Keep reading.

Equivalence of games

As we have seen, two game positions can both be N and yet behave quite differently in combination
with other games. We need a more refined classification.

14

Definition 3.1. Let G1 and G2 be two (possibly different) games, and let g1 and g2 be positions of G1

and G2 respectively. We say that g1 is equivalent to g2 (g1 ' g2) if, for any position h of any game H,
g1 + h has the same N/P status as g2 + h.

In other words, in the context of game addition, equivalent positions will produce the same results.

Checking whether two positions are equivalent turns out to be surprisingly easy: just add them up!

Theorem 3.1. g1 ' g2 if and only if g1 + g2 is a P position.

Proof: First, suppose g1 ' g2. Substituting g2 for h in the definition of equivalence, we see that g1 + g2
must have the same N/P status as g2 + g2. Since the latter is a P -position (Theorem 1.2), so is the
former.

Conversely, suppose g1 + g2 is a P -position and let h be any position in any game. We know that
adding a P -position has no effect on N/P status (Theorem 1.3), so g1 + h has the same status as
(g1 + h) + (g1 + g2). Since addition of games is commutative and associative, we can rewrite this as
(g2 + h) + (g1 + g1). Since g1 + g1 is a P -position (Theorem 1.2), adding it does not affect N/P status.
Thus we have show that the following positions all have the same N/P status:

g1 + h ←→ (g1 + h) + (g1 + g2) ←→ (g2 + h) + (g1 + g1) ←→ (g2 + h).

Thus g1 ' g2. QED.

Corollary 3.1. If g1 ' g2 and h is any position, then g1 + h ' g2 + h.

Note that Corollary 3.1 is not just repeating the definition of equivalence: it says that not only do g1 +h
and g2 + h have the same N/P status, but they are actually equivalent themselves.

Proof: (g1 + h) + (g2 + h) = (g1 + g2) + (h + h). This is a sum of two P -positions, so is itself a P
position. By Theorem 3.1, this means that g1 + h ' g2 + h. QED.

Corollary 3.2. g is a P -position if and only if g ' 0∗.

Proof: This is almost tautological. g + 0∗ is just g itself, so g is a P -position iff g + 0∗ is a P -position.

Corollary 3.3. Two nimheaps are equivalent if and only if they are the same size. In other words, if
X 6= Y then X∗ 6' Y ∗.

Proof: If X 6= Y , then X∗ + Y ∗ is an N -position, since you can move from it either to X∗ + X∗ or to
Y ∗ + Y ∗ (depending on which of X and Y is larger). Thus X∗ 6' Y ∗.

The Nim table, revisited

Theorem 3.1 sheds a new light on our Nim table. Remember that we defined [X, Y] to be the unique
number Z such that X∗+Y ∗+Z∗ is a P -position. But by Theorem 3.1, this is the same as saying that
X∗ + Y ∗ ' Z∗. Thus our table turns out to be the Nim addition table: it tells us how to turn the sum
of two nimheaps into a single nimheap, at least up to equivalence. No wonder the formula for [X, Y]
was a kind of sum, X ⊕ Y .

15

Originally we constructed the Nim table just to play 3-pile Nim. But now that we know that it is an
addition table, we can use it to play Nim with any number of piles. For example, let’s analyze the
position 5∗ + 6∗ + 7∗ + 8∗. We have:

5∗ + 6∗ + 7∗ + 8∗ ' 3∗ + 7∗ + 8∗ (since 5⊕ 6 = 3)
' 4∗ + 8∗ (since 3⊕ 7 = 4)
' 12∗ (since 4⊕ 8 = 12)

Thus 5∗ + 6∗ + 7∗ + 8∗ is an N -position. If you add it to any additional nimheaps, or to any other
position of any other game, it will behave just like a single nimheap of size 12.

To find a good move from 5∗ + 6∗ + 7∗ + 8∗, we use the second-to-last equivalence in our derivation
above:

5∗ + 6∗ + 7∗ + 8∗ ' 4∗ + 8∗.

Thus we can remove 4 stones from the 8∗ heap to get a position equivalent to 4∗ + 4∗ ' 0∗, i.e. a
P -position. There are other good moves too, but all we need is one.

(You can also derive all of these results using the generalization of Theorem 2.3: X∗1 + · · · + X∗k is a
P -position if and only if X1 ⊕ · · · ⊕Xk = 0.)

One game to rule them all

We are now ready to state and prove the main theorem of this crash course, which will finally explain
why we care so much about Nim.

Theorem 3.2 (Sprague-Grundy). Any position g in a FISP game is equivalent to a nimheap. In
other words, there is some nonnegative integer X such that g ' X∗.

By Corollary 3.3, X is unique. We call X the nimvalue of g and write |g| = X.

Proof: We use strong induction on the height k of g:

Base case: k=0. All terminal positions have nimvalue 0. (If you think about what this means, it’s
just saying that if you add a terminal position to the empty nimheap, you get a P -position. Well, you
definitely can’t make any moves from this position! So yes, it’s P .)

Inductive step: Suppose the theorem holds for all positions of height less than k, and suppose g is of
height k. Let S = {h1, h2, . . . hk} be the set of positions to which you can move from g. Since all the
elements of S have height less than k, each hi ∈ S is equivalent to some nimheap X∗i . Then we claim
that g 'M∗, where

M = MEX(X1, . . . , Xk).

We need to show that g+M∗ is a P -position, i.e. that all moves from g+M∗ are to N -positions. There
are two ways to move from g + M∗:

• You could make a move in g to some hi ∈ S. The resulting position is hi +M∗, which is equivalent
to X∗i +M∗. This is an N -position unless M = Xi, which is impossible by the definition of MEX.

16

• You could remove some stones from M∗. The resulting position is g +M∗
1 , for some M1 < M . By

definition of MEX, M1 = Xi for some i. Thus it is possible to move from g + M∗
1 to

hi + M∗
1 ' X∗i + M∗

1 = M∗
1 + M∗

1 ' 0∗.

This means g + M∗
1 is an N -position

We have shown that all moves from g+M∗ are to N -positions. This implies that g+M∗ is a P -position,
so g 'M∗. QED

The Sprague-Grundy Theorem is incredibly powerful. It says that, to fully analyze a FISP game,
you just need to compute the nimvalue of every position, which you do by the MEX rule. Then,
when you find yourself playing a sum of games that you’ve already analyzed, and you’re at position
g = g1 + g2 + · · ·+ gk, you can just pretend that the individual gi’s are nimheaps and that g is a game
of k-pile Nim. This allows you to figure out the right move from g using Nim addition, exactly as we
did with 5∗ + 6∗ + 7∗ + 8∗ in the last section.

Suggested exercise 3.1. You might have noticed that the proof of the Sprague-Grundy Theorem is
extremely similar to the proof of Theorem 2.2. This is because Theorem 2.2 is really just a special case
of Sprague-Grundy. Can you see in what sense this is true? What is the game g in Theorem 2.2?

Example: Consider once again the game T: a single pile of stones from which a player on her turn
must remove 2, 3, or 5 stones. Previously, we computed only the N/P status of each position TX ; now
let us find the nimvalues.

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|TX | 0 0 1 1 2 2 3 0 0 1 1 2 2 3 0 0 1 1 2 2

The first few entries in the table above were computed as follows:

• T0 and T1 are terminal positions, so |T0| = |T1| = 0.

• From T2 you can move only to T0. Thus

|T2| = MEX(|T0|) = MEX(0) = 1.

• From T3, you can move to T0 or T1, so |T3| = MEX(0) = 1.

• From T4, you can move to T1 or T2, so

|T4| = MEX(|T1|, |T2|) = MEX(0, 1) = 2.

• From T5, you can move to T0,T2, or T3, so

|T5| = MEX(|T0|, |T2|, |T3|) = MEX(0, 1) = 2.

• From T6, you can move to T1,T3, and T4, so |T6| = MEX(0, 1, 2) = 3.

17

• From T7, you can move to T2,T4, and T5, so |T7| = MEX(1, 2, 3) = 0. (This is consistent with
our previous finding that T7 is a P -position.)

From here, as before, you can check that the pattern of nimvalues is periodic with period 7.

Now suppose we play a game with 3 piles of stones, in which a player, on her turn, must remove 2,3,or 5
stones from any one pile. This game is just the sum of 3 copies of T, so we can use the Sprague-Grundy
Theorem. For example, how should you play from position g = T8 + T12 + T13?

Consulting our table of nimvalues of T, we see that g ' 2∗ + 3∗, so we can win by moving from the
T-heap equivalent to 3∗ (i.e. T13) to some T-heap equivalent to 2∗. We can achieve this by removing
two stones from the T13 heap, resulting in the position T8 + T11 + T12 ' 2∗ + 2∗ ' 0∗. Continuing in
this way, we will be able to win the game.

4 Summary

What we have learned: how to analyze a FISP game

• The first stage in analyzing a FISP game is to try to decompose it into a sum of simpler games.
(This is not always possible: for example, Candy Split cannot be decomposed in this way. But if
it’s possible, it’s very helpful.)

• Next, find the nimvalue of each position in the component games. This is done by starting at
height 0 and proceeding by the MEX rule, as in the proof of the Sprague-Grundy Theorem. The
hope is that once you do this for enough small positions, you will notice a pattern and prove that
it holds in general.

• Finally, if you are playing a sum of games whose nimvalues you know, you can just pretend that
you are playing Nim and use the Nim addition table to figure out where to move.

What we have not learned

Here are some of the many things not covered in this crash course:

• How to solve Problem #6: that’s your job!

• Other examples of FISP games. There are many, including some that are actually played as games
by people who are not mathematicians!

• Non-FISP combinatorial games. FISP games are the tip of the iceberg: most of the research in
combinatorial game theory is on partizan games, where players may have different moves available
to them. You can also change from standard play to other winning conditions, or see what happens
if you allow infinity into your games.

• Non-combinatorial games. The mathematical field of game theory studies all the messy kinds of
games that are banned from combinatorial game theory: games where players don’t have complete

18

information (including games involving randomness), games with more than two players, games
where players don’t alternate moves, games with ties, cooperative games, etc. You might think
that combinatorial game theory should be a subfield of game theory, but the techniques used to
study combinatorial and non-combinatorial games are so different that they are essentially two
unrelated fields. The non-combinatorial kind of game theory is sometimes called matrix game
theory. It has a lot of application in economics, psychology, political science, etc.

Where you can learn more

You can find lots of tidbits about combinatorial game theory online. In particular, if you found this
crash course unclear or confusing, you can try a different exposition. Two possible places to start are:

• the Wikipedia page for the Sprague-Grundy Theorem;

• the first 15 or so pages of the handout at http://web.mit.edu/sp.268/www/nim.pdf.

Don’t forget to include a reference in your solutions to any outside sources that you used.

But if you really want to learn combinatorial game theory – not for the Qualifying Quiz but for the
fun of it – the best place to look is the classic book Winning Ways for Your Mathematical Plays, by
Elwyn Berlekamp, John Conway, and Richard Guy. In addition to being an excellent and thorough
introduction to combinatorial game theory, it is one of the quirkiest, funniest, and best-written math
books you’ll probably ever read.

Good luck with the Qualifying Quiz!

The Mathcamp team

19

https://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem
http://web.mit.edu/sp.268/www/nim.pdf

	A Mathematical Introduction to Games
	Nim
	The Sprague-Grundy Theorem
	Summary

