SUPPLEMENT TO CLASS DESCRIPTIONS—WEEK 2, MATHCAMP 2024

1:10 PM CLASSES

Abstract

Algorithms for large primes. (Zach) TWOFS 50 minutes Much of modern internet security relies on a counterintuitive principle: testing whether large numbers are prime is fast, but factoring those same numbers is believed to be infeasible, even with state-of-the-art supercomputers and factoring algorithms.

For example, consider this 617 -digit number n : $$
\begin{array}{llllllllllllll} 3049393803 & 9064098204 & 6257224329 & 8853574672 & 1496643781 & 0821538918 & 8696453420 & 2146997229 & 6758419947 & 0131652491 \\ 3849210517 & 4158750767 & 8519631211 & 9495759970 & 8592524343 & 0912930217 & 3156352106 & 8467091704 & 3042905675 & 3647687903 \\ 1227528692 & 0589276904 & 8370921428 & 5585719241 & 1019900737 & 7816113198 & 1122159963 & 1064596622 & 5416780223 & 2291640108 \\ 9348914343 & 2024811908 & 9653390042 & 0837116144 & 9456532221 & 2395483082 & 5359910625 & 7243375192 & 3565957069 & 9858976093 \\ 3034168762 & 8457872080 & 4811538402 & 6599867498 & 1094692572 & 8808367980 & 5389339036 & 5915012815 & 2428549483 & 2182868787 \\ 4342301743 & 0194193066 & 8801385061 & 2219622243 & 0101198484 & 7699115272 & 5406666046 & 4440567481 & 0600472360 & 7644097968 \\ 6192546646 & 5327459 . \end{array}
$$

This number n is not prime and $n+8$ is prime, and a typical laptop can verify both of these facts in fractions of a second. By contrast, the technology to factor n (and numbers like it) into primes likely does not yet exist, and most encrypted communications (in particular, most internet traffic) depends on this fact! The example n above is copied directly from the public certificate that protects https://www.amazon.com, but this security could be breached by anyone who can factor n into primes, so Amazon and all of its users rely on this not being feasible.

To factor a large number and/or test whether it is prime, the naïve "trial division" algorithm considers all potential factors individually: "is it divisible by 2 ? 3 ? 4? 5? etc.". But for numbers with hundreds of digits, this is way too slow, since the universe will literally suffer heat death before this algorithm makes noticeable progress.

So how is it possible to conclude that a large number (like n) is composite without factoring it? How can we be sure that a large number (like $n+8$) is prime without testing all of its possible prime factors? We'll explore clever algorithms that enable efficient tests like these, and the elegant underlying number theory.

Topics may include: primality certificates; probable vs provable primes; the Great Internet Mersenne Prime Search; generating large primes; the AKS primality test.

Homework: Recommended.

Class format: Lecture

Prerequisites: Modular arithmetic: should understand modular inverses and Fermat's Little Theorem. I plan not to assume or use any knowledge of abstract algebra.

Colloquia
Obtaining freedom via ping pong. (Arya) TW-FS 50 minutes
Groups, like people, are defined by their actions. In this talk, we shall delve into the world of geometric group theory, by studying free groups and thinking about which groups are free. The purpose of this talk is to convince the audience that abstract algebra can also be studied by simply drawing pictures. Arya's meta-goal (as always) is to talk about hyperbolic geometry. All of this somehow relates to ping pong. Some familiarity with groups or linear algebra would be useful, but not necessary. Come to the talk to find out more!

