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9:10 am classes

Wallpaper patterns (week 2 of 2). (Susan) TWΘFS 50 minutes
Continuation of Wallpaper patterns week 1.

Homework: Optional.

Class format: Lecture.

Prerequisites: Week 1 of this class.

Field extensions and Galois theory (week 2 of 2). (Mark) TWΘFS 50 minutes
This is a continuation of last week’s class. If you’d like to join, talk to someone who took that class

and/or to Mark to get an idea of what has been covered so far.

Homework: Recommended.

Class format: Interactive lecture.

Prerequisites: Week 1 of this class, or equivalent knowledge.

Error-correcting codes and sphere packing. (Kailee) TWΘFS 50 minutes
Imagine you want to send a message to your friend, but your carrier pigeon is on vacation, so you

use a computer instead. If this happens perfectly, well, that’s great! However, what if the computer
messes up your message, maybe by deleting or corrupting some parts of it? Is there any way for your
friend to know what your message really was? This will all be discussed as we learn some basic theory
and bounds about error-correcting codes, including the Hamming bound, linear codes, and perfect
codes. Spoiler alert for the end of the class: we’ll see how our understanding of error-correcting codes
gives us bounds about the sphere packing problem!

Homework: Optional.

Class format: Interactive lecture.

Prerequisites: Linear algebra (matrix multiplication, linear independence), Combinatorics (counting
rules, binomial coefficients).

1



9:10 am classes ◦ MC2024 ◦ Week 4 2

Markov triples, continued fractions, and < 3. (Misha) TWΘFS 50 minutes
Ask any continuedfractionologist, “Which real number has the worst continued fraction expansion?”

I guarantee you that all of them will say that it’s the golden ratio: 1+
√
5

2 . The golden ratio has a

“Lagrange number” of
√
5, which is the smallest Lagrange number possible.

Less well-known is the second-worst real number: 1+
√
2, with a Lagrange number of

√
8. Practically

nobody knows that 9+
√
221

10 is the third-worst real number, with a Lagrange number of
√
221/5. It

turns out that there is an infinite sequence of bad real numbers whose Lagrange numbers approach,
but always remain less than, 3.

To find the numbers in this infinite sequence, we will study Markov triples: solutions to the second-
most important quadratic Diophantine equation in three unknowns.1 That equation is

x2 + y2 + z2 = 3xyz,

and we will understand its solutions by hanging them up on an infinite binary tree called the Markov
tree. To prove the connection between Markov triples and continued fractions, we will hang many other
decorations on infinite binary trees: fractions, binary strings, and linear fractional transformations,
just to name a few. Along the way, we will catch a few glimpses of the uniqueness conjecture: a
problem about Markov triples and irrational numbers that has remained open for 111 years.

Homework: Recommended.

Class format: Interactive lecture.

Prerequisites: Some modular arithmetic is the only thing you’ll actually need to come in knowing. If
you’ve seen continued fractions before (say, in Athina’s class), or linear algebra, or group theory, or
analysis, there will be a few moments at which I’ll be able to point out something cool that you’d need
that background to appreciate, but you’ll be fine without them. (And if you’ve seen a lot of these
topics, you won’t be bored, because what we’re doing with them is very different.)

Paradoxes in probability and statistics. (Jane Wang) TWΘFS 50 minutes
Between 2000 and 2013, the median US wage increased by 1%. But over that same time interval,

median incomes for every educational group (e.g. college graduate, some college, etc.) decreased. How
was this possible? Probability and statistics are full of examples such as this one that can challenge
our thinking and run contrary to our intuition. In this short course, we will explore, discuss, and
grapple with some of these paradoxes, ranging from the theoretical to real-world examples. Along the
way, we will build tools and intuition for thinking about probability and statistics.

Homework: Optional.

Class format: Interactive lecture.

Prerequisites: Prior experience with probability helpful, but not required.

Fair division using topology. (Jane Wang) TWΘFS 50 minutes
How can we fairly divide a cake among multiple people when each person values frosting, edges,

etc. differently? We can answer this question using tools from topology, the study of continuous
maps and properties that are preserved under continuous deformation. It turns out that topology has
many surprising applications to fields ranging from economics to combinatorics to data science. In
this course, we will explore some tools from topology and then survey some applications to problems
of fair division (of cake, necklaces, rent, and more!).

Homework: Optional.

1Pythagorean triples, of course, are solutions to the most important such equation: x2 + y2 = z2.
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Class format: Interactive lecture.

Prerequisites: Prior experience with topology might be helpful, but is not necessary.

Totally positive, dude. (Mia Smith) TWΘFS 50 minutes
If the 80’s were all “totally radical” and “totally wicked”, then the 2020’s are “totally positive”

(at least for algebraic combinatorialists, that is). So what IS total positivity and why do we care??
Consider the following two questions:

How many tests are needed to determine if a 2× n matrix is totally positive?
How many tests are needed to determine if an n× n matrix is flag-totally positive2?
If we decide to naively check all minors, then

(
n
2

)
and (n−1)(n+2)/2 tests are required. However, we

can actually do much better than that. And the solution lies in combinatorics! By cleverly recasting
the problems in terms of triangulations and wiring diagrams, we can quickly argue that only a linear
number of tests are needed. And intriguingly, we’ll see that the arguments for both examples are
strikingly similar. . .

As it turns out, both examples can be encapsulated by the same combinatorial object, a cluster
algebra. Introduced in 2002 by Fomin and Zelevinsky, cluster algebras revolutionized algebraic combi-
natorics, unifying numerous questions about positivity with one shared structure. Now that’s totally
wicked positive!

Homework: Optional.

Class format: Interactive lecture.

Prerequisites: Linear algebra (familiarity with bases, matrices, and determinants).

10:10 am classes

Commutative algebra/algebraic geometry (week 2 of 2). (Mark) TWΘFS 50 minutes
This is a continuation of last week’s class. If you’d like to join, talk to someone who took that class

and/or to Mark to get an idea of what has been covered so far.

Homework: Recommended.

Class format: Interactive lecture.

Prerequisites: Week 1 of the class, or equivalent knowledge.

What is diagonalization? (Della) TWΘFS 50 minutes
You may know that there are uncountably many real numbers, there can’t be a set of all sets that

don’t contain themselves, the axioms of arithmetic are incomplete, it’s impossible to define truth,
there’s no algorithm to decide whether a program halts, and the Y combinator finds fixed points of
functions. But you probably don’t know that these are secretly all the same theorem! We’ll explore
what they have in common, and then use the language of category theory to express a generalization
of all of them.

Homework: Optional.

Class format: Lecture.

Prerequisites: You should have seen at least two of the results listed above.

2A matrix is totally positive if all minors are positive and flag-totally positive if particular minors are.



10:10 am classes ◦ MC2024 ◦ Week 4 4

Hyperreal numbers. (Krishan) TWΘFS 50 minutes
Intuitively, the derivative f ′(x) should be the slope of the line between f(x) and f(x+ ε) where ε is

an “infinitely small” number. Unfortunately this ε is not a real number. But what if we could extend
the real numbers to add an “infinitely small” ε as well as infinite numbers? Even better, what if we
could do this while preserving the fundamental characteristics of R? We can do all this and more!
In this class, we will be constructing the hyperreal numbers from scratch. Along the way we’ll learn
about ultrafilters as well as some neat theorems and ideas from logic.

Homework: None.

Class format: Mix of lecture and group work.

Prerequisites: None.

The first black hole: Schwarzschild spacetime. (Laithy) TWΘFS 50 minutes
We will explore the fascinating world of black holes through the lens of General Relativity, Einstein’s

theory of gravity. In 1915, Einstein formulated a theory of spacetime and gravity in which he described
gravity as an intrinsic geometric property of spacetime called curvature that is caused by mass and
energy present in spacetime. He asserted what’s now called the Einstein’s field equations which give a
precise relation between the curvature of spacetime and the matter present, hence describing precisely
how massive objects cause a distortion in the fabric of spacetime, which we perceive as gravity.

Einstein’s field equations are very complex and highly nonlinear; understanding the solutions to
these equations and their behaviour is still an active area of research in both mathematics and physics.
Nonetheless, a particular solution to Einstein’s equations, called the Schwarzschild spacetime, was
discovered soon after the appearance of General Relativity. It’s the simplest model of a universe that
describes what we now know as a black hole. More specifically, this spacetime represents a universe
that is a vacuum except for a single static non-rotating black hole.

The goals of this class is to study the Schwarzschild spacetime and its many properties. Assuming
the spacetime is static and spherically symmetric, we will reduce Einstein’s vacuum equations to a
manageable system of ordinary differential equations and derive the geometry of the Schwarzschild
spacetime. We will explore Birkhoff’s theorem, which states that the Schwarzschild spacetime is
the unique spherially symmetric solution containing a black hole, reinforcing the importance of the
Schwarzschild solution in the study of black holes.

Homework: Recommended.

Class format: Lecture.

Prerequisites: Linear algebra (specifically, inner products and bilinear forms on vector spaces) and
basic calculus. Special relativity is recommended but not required.

Algebraic complexity. (Yuval Wigderson) TWΘFS 50 minutes
I originally considered calling this class “How to prove P ̸= NP using middle-school algebra”. But

eventually I decided that “Algebraic complexity” is a better name.
Algebraic complexity is a branch of theoretical computer science that studies how difficult it is to

compute polynomials. For example, the polynomial P (x, y) = x3 + 4x2y + xy2 + 2y3 naively requires
13 arithmetic operations to compute, since there are 13 + and · signs in the expression

P (x, y) = x · x · x+ 4 · x · x · y + x · y · y + 2 · y · y · y.

However, if we note that

P (x, y) = (x+ y)3 + y(x− y)2 = (x+ y) · (x+ y) · (x+ y) + y · (x− y) · (x− y),
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we can reduce the number of arithmetic operations to 10. How much further can we go with this
example? More interestingly, can we understand which polynomials can be efficiently represented,
and which ones cannot? This question—which is at the heart of algebraic complexity—can be studied
from the perspectives of computer science, algebra, algebraic geometry, invariant theory, representation
theory, and many others, leading to an extremely rich mathematical theory which we will explore in
this class.

Also, by the end of the class, we will see three different ways to (potentially) prove that P ̸= NP
using middle-school algebra.

Homework: Recommended.

Class format: Interactive lecture.

Prerequisites: It would be helpful, but not strictly necessary, to know what determinants are and to
have a rough sense of what the P vs. NP question asks. It would also be helpful to have seen big-O
notation.

Root systems. (Kevin) TWΘFS 50 minutes
Root systems are arrangements of vectors in Euclidean space with lots of symmetries and lots and

lots of applications (group theory, Lie groups and Lie algebras, representation theory, combinatorics,
algebraic geometry, mathematical physics, and more!). Here’s a simple example, called A2:

Here’s a less simple example, called E8:
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Even though they appear in so many different areas of math, root systems themselves are very
concrete objects. We’ll study their combinatorial properties, construct a bunch of examples like the
ones above, and learn about their beautiful classification by Dynkin diagrams.

Homework: Recommended.

Class format: Lecture.

Prerequisites: None.

11:10 am classes

A 3D reconstruction problem. (Tim!) TWΘFS 50 minutes
In 2020, YouTube star and recreational mathematician Matt Parker wired his Christmas tree with

500 individually addressable LED lights, and turned his tree into an eight-foot tall programmable 3D
display.

The big problem he needed to solve: He strung up his LEDs in an arbitrary an haphazard way, so
he didn’t know where in 3D space they all ended up. How could he figure out the 3D coordinates of
all his LEDs?

His solution: He found the coordinates by putting his tree in a pitch dark room, lighting up one
LED at a time, and taking a picture of the tree. For each LED, he read off the x- and y-coordinates of
the LED by taking the pixel in the image that was the brightest. Then he rotated the tree exactly 90
degrees and repeated the whole process to get the z-coordinate. You can watch the video for yourself,
if you’d like: https://www.youtube.com/watch?v=TvlpIojusBE

Matt’s approach to finding 3D coordinates had some advantages and disadvantages. Disadvantages:

• Even though he wrote code to automate the process, he was only lighting one LED at a time,
so it took a long time to get through all 500 LEDs.

• He needed the room to be very dark, because he was assuming that any light that reached the
camera was coming from the one currently lit LED.

• He had to be careful where he put the camera; his code assumed that the pictures were being
taken from head on and then directly from the side.

• Sometimes a branch would obscure the camera’s view of an LED, so the camera would not
register the right coordinate. He tried to account for this by taking pictures from the back and

https://www.youtube.com/watch?v=TvlpIojusBE
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the other side as well, which took more time. The LEDs that still weren’t correctly located
after this he had to fix one by one.

• He assumed that the camera was infinitely far away, which it was not, so all the measurements
were a bit distorted.

On the other hand, there was really only one main advantage of his approach: he was able to finish
this project by working for just an hour a night, achieving what he set out to do in an efficient way;
thus, he avoided letting the project descend into an obsession that takes over his life.

I realized that I could use a bit more math to make my own 3D display that avoided all of his
project’s disadvantages, as well as its advantage.

This class goes into the math we need to make a better 3D Christmas tree light display. And
there’s so much juicy math! Error-correcting codes help us speed up the scanning process. Principal
component analysis helps us remove the background of a picture taken in a brightly-lit room. We’ll run
optimization algorithms to stitch 2D pictures taken from arbitrary, unknown angles into a 3D model.
The specific algorithm we need is pretty clever: we can’t just use least squares because the problem is
not linear, but there is a workaround called alternating least squares that is pretty beautiful.

The trickiest part of the whole puzzle is projecting 3D coordinates down to 2D coordinates (for
the purposes of plugging into the optimization algorithm). This projection is within the realm of
linear algebra if we assume that the camera is infinitely far away, but for a camera in the real world,
calculating this projection involves dividing by a variable, something that is distinctly not allowed in
linear algebra. But, as if by magic, if we view the problem using projective geometry, we can bring
the problem back into the world of linear algebra.

And all this is not to mention all the cool fun and/or mathy animations you can make once you
have a 3D display: You can make objects that move around in 3D. You can make images that only
appear to someone standing in a specified location of your choosing. You can illustrate algorithms on
graphs. I’ll leave you with an animation I made on my tree last winter (everything programmed from
scratch): https://www.youtube.com/shorts/RvQ3GBOcBYk

Homework: Recommended.

Class format: Interactive Lecture.

Prerequisites: Linear Algebra.

Infinite games. (Krishan) TWΘFS 50 minutes
Do you like to play boardgames? Do you wish they lasted longer? Well this is the class for you! In

this class we’ll be learning about infinite versions of existing games (for example Wordle and Absurdle)
as well as proving theorems about large classes of infinite games. We’ll start by studying 2-player,
perfect information games. These are game where one each player knows everything about the game
state and there is no randomness (think chess rather than poker). We’ll see that every such game can
be associated with a finite tree, and use this idea to prove that every finite game is determined (one
of the players has a winning strategy). Then we’ll prove that certain infinite games are determined by
studying topological properties of their game trees. We’ll use the axiom of choice to cook up a weird
infinite game where no player has a winning strategy, and we’ll see that things can get even weirder
without choice.

Homework: Optional.

Class format: Lecture plus some group work in class.

Prerequisites: None.

https://www.youtube.com/shorts/RvQ3GBOcBYk
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Infinite chess. (Della) TWΘFS 50 minutes
Black to move, white to mate, on an infinite board.3 How many turns does it take White to win?

Answering this question will require a careful definition of “how many turns”, which will lead us to
the ordinal numbers and ever more terrifying chess positions.

Homework: Optional.

Class format: Lecture.

Prerequisites: The basic rules of chess.

Topological Tverberg’s theorem. (Viv Kuperberg) TWΘFS 50 minutes
The convex hull of a set X of points is the smallest set C containing X and all lines between points

in C. Given four points in the plane, I can always partition them into two sets whose convex hulls
intersect. And if I live in any Euclidean space and I’m given enough points, I can do the same thing.
And if, before starting my partitioning process, I draw my convex hulls however I like, rather than
through such silly procedures as “following the definition”, I can still do the same thing. And if I’d like
to split my set into three, four, five, or seven subsets instead of two, I can still do the same thing. . . but
I can’t do six subsets.

If this seems really weird, that’s because it’s really weird. We’ll prove these statements and discuss
the recent astonishing counterexample to the composite case.

Homework: Recommended.

Class format: Lecture

Prerequisites: Linear algebra. Enough group theory to know what a group action on a set is.

Intro to elliptic curves. (Chloe) TWΘFS 50 minutes
Why is a torus like a cubic curve? Find out in intro to elliptic curves! Elliptic curves are fascinating

mathematical objects with wide ranging applications and very active research. Not only was the

3Black will open by moving the middle rook up.
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theory of elliptic curves essential in proving Fermat’s Last Theorem, but they also have applications
to cryptography! It’s interesting that objects which are so simple to define, i.e. a non-singular curve
of the form y2 = x3 + ax2 + bx+ c, have such surprisingly deep theory.

In this class we’ll study the points on elliptic curves by defining a group law, discussing points of
finite order, and the discriminant of the curve. We’ll use what we learn about these topics to prove
the Nagell-Lutz Theorem which says exactly when we find rational points of finite order. For the last
day we’ll jump ahead to get the flavor of some extended topics like Complex multiplication, the broad
strokes of the proof of Fermat’s Last Theorem, and a Galois theory connection!

Homework: Recommended.

Class format: Interactive lectures

Prerequisites: Soft prereq: definition of group.

Linear models. (Mira Bernstein) TWΘFS 50 minutes
At some point in your high school career, you’ve probably encountered the concept of “line of best

fit” for a set of data points. You may have been told that the line of best fit is the one that minimizes
the sum of vertical square distances between the line and the data points. (Though actually — spoiler!
— that’s not always the case.)

This raises all sorts of questions. What does “best fit” mean: best from what point of view? (You’re
not allowed to say, “best from the point of view of minimizing the sum of squares”: that’s circular.)
Why do we want to minimize the sum of the squares of the distances, as opposed to, say, the sum of
their absolute values? Why do we use vertical distance rather than the usual definition of distance
from a point to a line? Finally, once we find the line of best fit, what sorts of real-world conclusions
can we actually draw from this?

All these questions have good answers if (and only if) you adopt a specific mathematical framework
for your data analysis: the framework of linear probabilistic models. This will lead us to some very cool
math (and math history) that most introductory statistics courses gloss over. We’ll also talk about
the difference between the traditional (frequentist) approach to statistics and the modern (Bayesian)
approach.

A big part of the course will be working with real data in R. (R is an open-source programming
language geared toward statistics and data analysis. I’ll teach you all the R you need as part of the
course.) We’ll see that it’s not enough to understand the math behind your models: you also have to
pick the right model, which can be quite tricky — especially if you’re asking questions about causality.
(Correlation, famously, does not imply causation, but it’s causation that we actually care about most
of the time!)

Most statistics classes are either very theoretical (just the math) or very applied (geared toward
non-math people). But to me, it’s actually the interplay between math and the real world that makes
statistics so interesting! So why settle for just one when you can have both?

Homework: Recommended.

Class format: Interactive lecture.

Prerequisites: There are no strict prerequisites, but:

• It would be helpful to have at least a bit of programming experience. We’ll be using very
elementary R, but if you’ve never written any code at all, it might be challenging.

• It would be very helpful to be familiar with the basics of random variables (mean, variance /
standard deviation, independence, normal distribution). I’ll do a quick review on Day 1, but
if all of this is completely new to you, it’ll go by really fast. (You’ll also have a chance to
review/practice some of these basics on Problem Set 1; so if you’re completely new to random
variables, you should consider Day 1 of this class “homework required”.)
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• Calculus will come up a couple of times but is not a prerequisite. You can definitely enjoy this
course without knowing any calculus, as long as you’re willing to take a few things on faith.

• At one point, we’ll need some very rudimentary linear algebra: just matrix multiplication and
dot product. But if you tune out briefly at this point, you can still enjoy the rest of the class.

• Statistics is definitely not a prerequisite. In fact, if you’ve taken AP Stats, there will be some
things you’ll need to unlearn. :)

1:10 pm classes

Building mathematical sculptures. (Zach) TWΘFS 80 minutes
Come transform ordinary items into elaborate geometric sculptures! In these small yet intricate

construction projects (that you can take home when complete), we will assemble dizzying drinking
straw weavings, decorative spheres made from playing cards, precarious binder clip constructions,
and more! Browse http://zacharyabel.com/sculpture/ for examples of the types of projects this
course may feature. Assembling these mathematical creations requires scrutiny of their mathematical
underpinnings from such areas as geometry, group theory, and knot theory, so come prepared to learn,
think, and build!

Homework: None.

Class format: Projects.

Prerequisites: None.

Ghostly graphs: or, Why bother with combinatorics when you could do linear algebra
instead? (Travis) TWΘFS 80 minutes

This class is all about what matrices and linear algebra can tell you about graphs, and it turns out
that it’s a lot : How many different paths of length k does a graph contain? How well-connected is it?
How do you draw a huge graph so that it doesn’t look like a pile of spaghetti spilled on the Wheelock
floor? Is there another kind of graph limit that Travis has kept hidden from the campers? Is there a
connection to discrete geometry?

We’ll answer some of these questions (though we probably won’t have time for all of them), not by
using combinatorics, but linear algebra.

Homework: Recommended.

Class format: Groupwork (IBL).

Prerequisites: You should know: the dot product for real vectors; eigenvectors; and what an orthonor-
mal basis is. (Week 1 of Intro to Linear Algebra is sufficient.) If you’ve seen some of these things but
not others, talk to me—I might be able to catch you up.

Building (weird) topological spaces. (Dan Zaharopol) TWΘFS 80 minutes
Topology is such an amazing subject. It lets us rigorously study wild and crazy spaces that shed

light on deep parts of math, not to mention physics, robotics, and more. But when you first study the
field, it’s kind of a morass of formalism—cool, but it’s easy to miss the forest for the trees.

Instead, join us on a beautiful hike with some wonderful views of the forest canopy: tools like
product spaces, quotient spaces, and homotopy equivalences that shed light on projective spaces of
any dimension, tori, cell complexes, and even the infinite-dimensional sphere. We’ll even gaze out a
bit at the valley of category theory.

Point-set topology isn’t a requirement for this class. If you’ve already seen point-set topology, this
will show you how to build up to the beautiful stuff algebraic topologists study. And if you haven’t,

http://zacharyabel.com/sculpture/


Colloquia ◦ MC2024 ◦ Week 4 11

this will still be rigorous—we’ll just black box a few ideas, so that when you see the basics in another
class you’ll have context and they’ll be more than just a pile of definitions.

It’s topology without the poison ivy.4 Let’s go!

Homework: Recommended.

Class format: Interactive lecture, with occasional breaks for students (in groups) to consider a new
space and share their analyses.

Prerequisites: You’ll have a deeper understanding of the class if you know point-set topology, but
you’ll be fine without.

Representation theory. (Aaron Landesman) TWΘFS 50 minutes
What do the pictures on the floor of the Puget Sound science building mean? It turns out they

are character tables. Given a finite group, the associated character table is a square grid of complex
numbers satisfying certain rules. These numbers come from representation theory, which describes
the symmetries of your favorite shapes. It can be pithily summarized as “group theory meets linear
algebra.”

Perhaps the best advertisement for this class is that, 6 years ago, one Mathcamp student had never
heard of representation theory, but took this class, and he loved it so much that he is heading to grad
school next year to study representation theory!

Homework: [HW] Required.

Class format: The first two days I will lecture to introduce the basic notions. The next two days we
students will work through examples of character tables. If there is a 5th day, I will lecture on some
of the proofs, though perhaps I’ll make an option to allow students to continue working on problems.

Prerequisites: Linear algebra and group theory. From group theory, familiarity with group actions
is essential. One should also be familiar with symmetric groups, conjugacy classes, commutators,
and quotient groups, among other things. From linear algebra, one should be familiar with linear
transformations, eigenvalues, trace, and direct sum, among other things.

Teichmueller theory of the torus. (Arya) TWΘFS 80 minutes
Take a paper square, and glue opposite sides. If done correctly (i.e., in R4), you will get a torus

which is flat—just like the paper you used to create it. In this class, we will study the geometry of this
type of construction. We will look at the “space of all flat tori” (Teichmüller space) and study it using
Lattices (in R2), Loops (on the torus), and Linear algebra. Along the way, we’ll meet some beautiful
critters like the curve graph, the Farey tessalation of the circle, and Möbius transformations in the
upper-half plane. Be warned—this class will involve some divison by zero, under staff supervision.

Homework: Optional.

Class format: Interactive lecture.

Prerequisites: None.

Colloquia

Peg solitaire to infinity. (Misha) TWΘFS 50 minutes
Here is a quick puzzle. You have a 5× 5 checkerboard with checkers placed on it as follows:

4Continued forest puns not guaranteed.
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The only moves you are allowed to make are moves in which one of the pieces jumps horizontally
or vertically over another to an empty space, removing the piece that was jumped over. Your goal is
to make 15 moves, ending with only one piece remaining.

In this colloquium, we will solve a puzzle (made up by Conway) which is infinitely harder than
this puzzle. In fact, we will prove that Conway’s puzzle is impossible to solve. But who are we to be
stopped by mere impossibility!? We will end by taking peg solitaire to infinity and solve Conway’s
impossible puzzle.

Math education, access, and opportunity. (Dan Zaharopol) TWΘFS 50 minutes
After spending over ten years at Mathcamp, I left my academic career to pursue work in math

education, creating the Bridge to Enter Advanced Mathematics (BEAM) program. In the course of
that work, I’ve learned a lot about the education space, seen the successes and failures of schools,
programs, and research.

What are we to make of differing levels of achievement in education? How do we parse everything
we see, and our instinct to “just fix it?” How do we reconcile the persistent ties between education,
inequality, and power in the US?

I’ll try to bring some order to the chaos, and talk about not just where things are now but how you
might be able to get involved and make a difference. Don’t expect easy answers, but do expect some
thought provoking questions and a better sense of just what the challenges are.

The law of anomalous numbers. (Yuval Wigderson) TWΘFS 50 minutes
30.1% of all powers of two begin with a one. Also, 30.1% of all powers of three begin with a one.

And don’t even get me started on powers of five.
On the other hand, 30.8% of the world’s countries have a population beginning with one. Whereas

28.1% of countries have an area beginning when one when measured in square kilometers, but 34.2%
of countries have an area beginning with one when measured in square miles.

There are 57 fundamental physical constants listed on Wikipedia. Of them, 19 (33.3%) begin with
a one.

What’s up with this? And what does it have to do with the fact that log10(2) ≈ 0.301?

A mathematical headache (and perhaps a cure). (Mira Bernstein) TWΘFS 50 minutes
The legendary mathematician and long-time Mathcamp visitor John H. Conway passed away in

2020 from COVID-19. Just before his death, the American Mathematical Monthly published a short
paper that Conway had written back in the 1970’s, called “A Headache-Causing Problem”. The
authors listed on the paper are “Conway (J.H.), Paterson (M.S.), and Moscow (U.S.S.R)” — yes, you
read that correctly. The abstract of the paper is: “After disproving the celebrated Conway-Paterson-
Moscow theorem [1], we prove that theorem and make an application to a well-known number-theoretic
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problem.” The reference [1] is to the paper itself; the number-theoretic problem is Fermat’s Last
Theorem.

As you can tell, this paper is joke piled upon joke — but the math is real and quite elegant. It
concerns a logic game that involves thinking about what other people are thinking. The “headache”
comes from the fact that both the proof and the disproof of the main theorem seem correct, and it
is hard to see the flaw in either argument. The paper doesn’t give away the answer — you have to
figure it out for yourself.

In this talk, I will tell you the story of this funny little paper (the first mathematical publication
by a major metropolitan area!) and introduce you to the Headache-Causing Problem. Hopefully, by
the end of the hour, we can vanquish the headache together.
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