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Ready to Apply to Mathcamp?

Instructions

We call it a quiz, but it’s really a challenge: a 
chance for you to show us how you approach new 
problems and new concepts in mathematics. What 
matters to us are not only your final results, but 
also your reasoning. Correct answers on their own 
will count for very little: you have to justify all of 
your assertions and prove to us that your solution 
is correct. (For some tips on writing proofs, see  
www.mathcamp.org/proofs.) Sometimes it may 
take a while to find the right way of approaching a 
problem. Be patient: there is no time limit. 

The problems start out easier and get harder. 
(At least we think so – but you may disagree.) 
None of the problems require a computer; you 
are welcome to use one if you’d like, but first see  
www.mathcamp.org/computers. 

We don’t expect every applicant to solve every 
problem: in the past, we have sometimes admitted 
people who could do only half of them, occasionally 
even fewer. However, don’t just try two or three 
problems and declare yourself done! The more 
problems you attempt, the better your chances. We 
strongly recommend that you try all the problems 
and send us the results of your efforts: partial 
solutions, conjectures, methods – everything counts.

If you need clarification on a problem, please email  
quiz12@mathcamp.org. You may not consult or 
get help from anyone else. You can use books or the 
Web to look up definitions, formulas, or standard 
techniques, but any information obtained in this way 
must be clearly referenced in your solution. Please do 
not try to look for the problems themselves: we want 
to see how well you can do math, not how well you 
can use Google! Any deviation from these rules is 
considered plagiarism and may disqualify you.

Have fun and good luck!

We invite applications from every student 
aged 13 through 18 who is interested in 

mathematics, regardless of racial, 
ethnic, religious, or economic background.

Mathcamp accepts applications both on the web and by 
regular mail. We strongly encourage all students with 
Internet access to use the online application process. 

The $20 application fee is waived for online applications.

Online Application:
Go to http://www.mathcamp.org/apply/ and follow the 
instructions. You’ll still have the opportunity to submit 
your quiz or recommendation letters by postal mail.

Postal Application:
Go to http://www.mathcamp.org/applybymail/ and 
print out the application packet.

An application to Mathcamp consists of the following:

1) Some basic information about yourself and your math 
background.  We will ask you to describe the math courses 
that you’ve taken at the high-school level or above, along with 
scores and awards from any math competitions you’ve done.

2) A brief personal statement about your interest in math and 
why you want to come to Mathcamp.

3) Your solutions to the 2012 Qualifying Quiz (see below).

4) Two recommendation letters, academic and personal. 

•	The first letter should be from a teacher who knows you well, 
preferably a math teacher. The letter should comment on 
your creativity, initiative, and ability to work with others, as 
well as on your academic achievements.

•	The second letter should be from another adult who knows 
you personally (e.g. an employer, pastor, soccer coach, etc. – 
preferably outside of school and not a relative). This letter 

should address your maturity, independence, social and 
personal qualities. We are looking for students who are not 
only good at math, but who will thrive with the freedom 
and responsibility that characterize Mathcamp, and who will 
make a positive contribution to the camp community. 

5) If you would like to be considered for financial assistance, 
please include the scholarship application (see instructions 
below). Note that admission to Mathcamp is need-blind.

6) For postal applications only: A US $20 application fee 
(check or money order made out to Mathematics Foundation 
of America) or a note signed by your parent or guardian 
explaining that your family cannot afford it.

All applications received 
by April 25, 2012 will be given 

equal consideration.

Please have a parent or guardian provide the following 
information, along with her or his email address: 

•	2011	family	income	(all	sources).
•	Expected	family	income	for	2012.	(If	significantly	
different from 2011, please explain.)
•	A	list	of	all	members	of	your	household	(supported	
by the above income) and their relationships to the 
applicant. For siblings, please provide ages.
•	The	cost	of	schooling,	if	any,	for	household	members	
(private school, college, etc).
•	The	estimated	cost	of	round-trip	travel	to	Mathcamp	
for the applicant.
•	The	portion	of	the	cost	of	Mathcamp	(including	both	
tuition and travel) that your family can afford to pay.
•	Any	special	circumstances	you	want	us	to	consider.

Dear parent: Student safety and enjoyment are 
Mathcamp’s first priorities.  Students will be housed 
in secure campus dormitories, with male and female 
students in designated sections of the same building. 
In case of a medical problem, we have a camp nurse 
on call, and the hospital is minutes away. Students 
will have access to university athletic facilities and 
computers.	 Every	 effort	 will	 be	 made	 to	 enable	
students who so desire to attend weekly religious 
services of their faith. Mathcamp is committed to an 
atmosphere of mutual tolerance, responsibility, and 
respect, and is proud of its past record in helping to 
create such an atmosphere.

- Mira Bernstein, Executive Director, Mathcamp

Full Camp Fee: $4000
(This includes tuition, room, board, and extracurriculars.)

Admission to Mathcamp is need-blind. 
We are deeply committed to enabling every 

qualified student to attend, regardless 
of financial circumstances.

Mathcamp awards over $100,000 in need-based 
scholarships every year. In the past seven years,  
no admitted applicant has been unable to attend the camp 
for financial reasons. We give several full scholarships 
each year, and occasionally even help students with travel 
expenses. Please do not let financial considerations prevent 
you from applying!  If you’d like to be considered for a 
scholarship, just complete the short application at right.

Problems
 
(1) A frog jumps along the number line. It starts at 0 and every 
second it jumps n units to the right (the same positive integer n 
each time). After one second, you decide that you want to catch the 
frog. It’s dark, you can’t see the frog, and you don’t know what n is.  
(For all you know, it might be a super-frog, so n could be arbitrarily 
large.) However, at any given second, you are allowed to choose an 
integer and search there.  If the frog is on that integer, you’ll catch 
it; if not, you’ll have to try again.

(a) Devise a strategy that will eventually catch the frog. (You’ll 
need to explain which integer you plan to check at each second.)

(b) Now suppose the frog is allowed to start by going either to 
the left or to the right; once it chooses a direction, it always jumps 
n units in that direction. Can you devise a strategy for catching it 
if you don’t know which way it’s going, and don’t know what n is?

(c) What if the conditions in part (b) hold, and you also don’t 
know which integer point the frog started at? (After you have 
worked on this problem for a while, it may be useful to read the 
following article, particularly the section after the proof of Lemma 1: 
http://www.cut-the-knot.org/do_you_know/numbers.shtml.)
        
(2) Each	 integer	 on	 the	 number	 line	 is	 colored	with	 exactly	 one	
of three possible colors—red, green or blue—according to the 
following rules:

• the negative of a red number must be colored blue,
• the sum of two blue numbers must be colored red.

(a) Show that the negative of a blue number must be colored 
red and the sum of two red numbers must be colored blue.

(b) Determine all possible colorings of the integers that satisfy 
these rules.

(3) Let p be an odd prime.  A group of p campers sit around a 
circle, and are labeled with the integers 1, 2, ..., p in clockwise order.  
The camper with label 1 yells out the number 1.  The camper 
sitting next to this camper in clockwise order yells out 2.  The 
camper two spots in clockwise order from the camper who yelled 
out 2 yells out 3.  This process continues:  the camper seated n spots 
(in clockwise order) from the camper who yelled out n must yell out 
n+1.  A camper gets a cookie anytime she or he yells out a number.

(a) Show that there is a camper who never gets a cookie.

(b) Of the campers who do get cookies, is there one who at 
some point has at least ten more cookies than the others?

(c) Of the campers who do get cookies, is there one who at some 
point has at least ten fewer cookies than the others?
        
(4) Let a be a rational number with 0 < a < 1.  A lollipop in the 
xy-plane with base (a, 0) consists of a line segment from (a, 0) to 
some point (a, b) with b > 0, together with a filled in disc of radius

less than b, centered at (a, b).  Determine whether or not it is 
possible to have a set of lollipops in the xy-plane satisfying both of 
the following conditions:

• for every rational number a with 0 < a < 1, there is a lollipop 
whose base is the point (a, 0),

• no two lollipops touch or overlap each other.

If such a set of lollipops exists, explain how to construct it.  If not, 
justify why not.
        
(5) A convex body in the plane is a region with positive area such 
that for any two points in this region, the entire line segment 
between them also lies within the region. Let P be the perimeter 
(i.e., boundary) of a convex body in the plane.  We will assume 
throughout this problem that P is centrally symmetric: that is, if 
(a, b) is a point on P, then so is (-a, -b).

For any nonnegative real number k, we define kP to be the subset 
of the plane obtained by multiplying all the points of P by k in each 
coordinate. In other words, for each point (a, b) of P, the point 
(ka, kb) is in kP.

If (x1,  y1), (x2,  y2) are two points in the plane, we define the 
P-distance between them to be the smallest nonnegative real 
number k such that when the set kP is translated by (x1, y1) (i.e., 
by x1 units horizontally and by y1 units vertically), the point (x2, y2) 
lies on it.  For example, if P is the square with vertices (0, 1), (1, 0), 
(0, -1), (-1, 0), then the P-distance between (3, 5) and (4, 10) is 6.

(a) Let P be the perimeter of a disc of radius 1 centered at the 
origin. Find a formula for the P-distance between any two points 
(a, b) and (c, d) in the plane.

(b) Let P be the perimeter of a rhombus with vertices (2, 0), 
(-2, 0), (0, 3), (0, -3). Find a formula for the P-distance between any 
two points (a, b) and (c, d) in the plane.

(c) In part (a), we took it for granted that a filled-in disc of 
radius 1 is a convex body. Prove this rigorously, using the definition 
of convexity given above.

(d) Suppose P is a convex quadrilateral.  What are the possible 
P-distances between vertices of P?  What about when P is a convex 
hexagon? (Remember: P must still be centrally symmetric!)

(e) Let P be the perimeter of some centrally symmetric convex 
body, and let (a, b) be a point on P.  What is the largest possible 
P-distance from (a, b) to another point on P?  Will (a, b) be at this 
P-distance from just one other point on P or from multiple other 
points? (If any of your answers depend on the geometry of P and/or 
on the choice of (a, b), explain how.)

(f) In principle, we could define P-distance even when P doesn’t 
come from a convex body and/or is not centrally symmetric. But it  
turns out that in both of these cases, the definition is problematic: 
the resulting quantity doesn’t behave in the ways we expect a 
“distance” to behave.  Can you determine what problematic issues 
arise?

(6) An	ocean	 has	 infinitely	many	 islands.	 Every	 island	 is	 labeled	
by one of the integers {...,-3,-2,-1,0,1,2,3,...}, with no two islands 
having the same label and every integer being the label of some 
island.  Two islands are connected by a bridge if their labels differ 
by a power of two.  For instance, there is a bridge connecting island 
7 and island -25.

We define the distance between two islands k1 and k2 to be the 
minimum number of bridges needed to get from k1 to k2.  For 
instance, the distance between the islands 0 and 7 is 2. (You 
can move from island 0 to island 8, then to island 7; this is the 
minimum, since you can’t go from 0 to 7 using just one bridge.)  

(a) Show that for any integer r ≥ 1, you can find two islands in 
the ocean at distance r from each other.

(b) An infinite path in our ocean consists of an infinite set of 
islands I and an infinite set of bridges B , such that: 

• every island in I is connected to exactly two bridges in B ,
• for any two islands in I , you can get from one to the other using 
only bridges in B .

Here is one example of an infinite path: let I be the set of all odd-
numbered islands and let B be the set of bridges between islands in 
I whose labels differ by 2. It is easy to see that I and B satisfy both 
conditions for an infinite path: 

•	Each	 island	k in I is connected to exactly two bridges in B – 
namely, the bridges leading to islands k-2 and k+2;
•	To	get	from	any	odd-numbered	island	to	any	other	using	bridges	
in B , you start at the smaller number and keep adding 2. 

As a warm-up, can you create an infinite path with the same I as in 
the example above, but with a different B ?

(c) Is it possible to construct an infinite path in our ocean 
such that, for any two islands k1, k2 in I ,  the minimum number 
of bridges in B needed to get from k1 to k2 is exactly the distance 
between k1 and k2?  For instance, the infinite path in our example 
does not have this property: it takes two bridges in B to go from  
island 1 to island 5 (you have to go via island 3), even though the 
distance between these two islands is 1 (there is a single bridge not 
in B that connects them to each other).  If your answer is yes, give 
an example of sets I and B that work. If your answer is no, prove 
that it can’t be done. 

(d) Does there exist a set S of 9 islands such that:

• the configuration of bridges connecting pairs of 
islands in S is exactly as in the picture at left (with no 
additional bridges between any of the islands), and

• the distance between any two islands in S equals the 
minimum number of bridges needed to get from one 
island to the other via islands in S ?

What if, instead of a 3 × 3 grid, we had an n × n grid: for which n 
is such a configuration possible?

(e) Suppose, in a sea far away, we have islands labeled in the 
same way, with two islands connected by a bridge if their labels 
differ by a power of 3. Is there a one-to-one correspondence 
between islands in the ocean and islands in the far-away sea, such 
that two islands in the ocean are connected by a bridge precisely 
when the corresponding two islands in the sea are connected by a 
bridge?

(7) Last summer, the graduate students teaching at Mathcamp (we 
call them “mentors”) arranged themselves into a pyramid with four 
layers, as shown in the picture above. 
Now suppose we generalize this to a pyramid with n layers 
(n  mentors in the bottom row, n-1 mentors in the row above, etc). 
Assume that all mentors have weight 1 and that each mentor 
supports his/her own weight plus half the weight supported by the 
one or two mentors leaning on him/her. For instance, in our four-
layer mentor pyramid, the weights supported by the mentors are:

Layer 1:                                           1

Layer 2:                               3/2                  3/2

Layer 3:                    7/4                  5/2                  7/4

Layer 4:       15/8                 25/8                 25/8                 15/8

(a) Find the weight supported by the mentor at the bottom left 
corner of a pyramid with n layers.

(b) Now suppose the pyramid has infinitely many layers. 
Let W(k,m) be the weight supported by the (k+1)-th mentor 
from the left in the (m+1)-th layer. For instance, W(0,  0)=1, 
W(0, 1)=W(1, 1)=3/2, and so on. Determine a recursive formula 
satisfied by the function W(k, m), for k, m ≥ 0.

(c) Find an explicit formula for W(k, 2k) in terms of k, for k ≥ 0.

(d) Extra credit: What can you say about W(k, m) in general?

(Note: If you’re not sure what we mean by “explicit” and “recursive” 
formulas, take a look at: http://www.regentsprep.org/Regents/
math/algtrig/ATP3/Recursive.htm)
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Discover Mathcamp!

Academics People and More

• Live and breathe mathematics: fascinating, deep, 
difficult, fun, mysterious, abstract, interconnected (and 
sometimes useful).

• Gain mathematical knowledge, skills and confidence – 
whether for a possible career in math or science, for math 
competitions, or just for yourself.

• Set and pursue your own goals: choose your classes, do 
a project, learn what you want to learn.

A Variety of Choices
The Mathcamp schedule is full of activities at every level, 
from introductory to the most advanced:

• Courses lasting anywhere from a few days to five weeks
• Lectures and seminars by distinguished visitors
• Math contests and problem-solving sessions
• Hands-on workshops and individual projects

You can learn more at:
http://www.mathcamp.org/academics

• Study with mathematicians who are passionate about 
their subject, from internationally known researchers to 
graduate students at the start of their careers, all eager to 
share their knowledge and enthusiasm.

• Make friends with students from around the world  
and discover how much fun it is to be around people who 
think math is cool.

“Out of nothing I have created a strange new universe.”
– Janos Bolyai, co-discoverer of hyperbolic geometry

Mathcamp is a chance to...

“Mathcamp was the first place where I really understood the 
beauty and intricacies of abstract mathematics.”

– Paul Hlebowitsch  (Iowa City, IA, USA)

“Mathcamp isn’t really a camp. It’s more of a five-week long 
festival - a congregation of people who celebrate math, enjoy 
math, learn math and essentially live math. Through it all 
I’ve discovered cool theorems that I wouldn’t have understood 
before and cool people  I didn’t know existed. I’ve learnt that I 
actually know close to nothing about the weird and wonderful 
subject that is mathematics, and that I will probably pursue it 
for the rest of my life. Math on, Mathcamp!”

– Yongquan Lu (Singapore)

“It’s not often that you find a place that is exciting to the mind 
and liberating to the spirit. Mathcamp is both.”

– Greg Burnham (Memphis, TN, USA)

“I’ve changed so much in my two years here. I think about 
math in a new, deeper way. I approach problems differently. 
I’ve gained perseverence and learned to ask for help without 
shame and give it with joy.”

– Hallie Glickman-Hoch (Brooklyn, NY, USA)

Classes
Course offerings vary from year to year, depending on the 
interests of the students and faculty. Some of the topics 
taught in previous years have included:

Discrete Mathematics:  Combinatorics • Generating 
functions • Partitions • Graph theory • Ramsey theory 
• Finite geometries • Polytopes and Polyhedra • 
Combinatorial Game Theory • Probability

Algebra and Number Theory:  Primes and factorization 
algorithms • Congruences and quadratic reciprocity • 
Linear algebra • Groups, rings, and fields • Galois theory • 
Representation theory • p-adic numbers

Geometry and Topology:		Euclidean	and	non-Euclidean	
(hyperbolic, spherical, projective) geometries • Geometric 
transformations • Combinatorial topology • Algebraic 
geometry • Knot theory • Brouwer Fixed-Point Theorem 

Calculus and Analysis:  Fourier analysis • Complex 
analysis • Real analysis • Measure theory • Dynamical 
systems • Non-standard analysis

Computer Science:  Cryptography • Algorithms • 
Complexity • Information Theory • P vs. NP

Logic and Foundations: Cardinals and ordinals • Gödel’s 
Incompleteness Theorem • The Banach-Tarski Paradox • 
Model theory • Category theory 

Connections to Science:  Relativity and quantum 
mechanics • Dimensional physics • Voting Theory •	
Bayesian Statistics • Neural networks • Mathematical 
biology • Cognitive Science

Discussions:  History and philosophy of mathematics • 
Math	Education	• “How to Give a Math Talk” • College, 
Graduate School and Beyond

Problem Solving:  Proof techniques •	Elementary	and	
advanced methods • Contest problems of various levels of 
difficulty • Weekly “Math Relays” and team competitions

The Freedom to Choose
Mathcamp does not have a set curriculum or a list of 
requirements. We encourage the faculty to teach what they 
are most passionate about, and we let the students choose 
what they are interested in learning. With the help of an 
academic advisor, you will design a program of study that 
reflects your own interests and goals. You can take any 
classes you want, and even the number of classes that you 
attend each day is up to you: you can use your time to review 
what you’ve learned, talk to one of your professors, work 
on problems, do a project, or just take a break. For many 
students, the freedom to take charge of their own education 
is one of the aspects of Mathcamp that they value most.

Projects
Every	student	at	Mathcamp	 is	encouraged	to	do	a	project,	
supervised by one of the mentors or faculty. Projects range 
in scope from creative applications of simple techniques to 
advanced problems connected to faculty research. Project 
topics in previous years have included:

•	Periodicity of Fibonacci numbers mod n
•	Information theory and psychology
•	Knight tours on an m-by-n chessboard
•	Cellular automata
•	Cops and robbers on a graph
•	Constructing the regular 17-gon
•	Admissible covers of algebraic curves
•	Mathematical Finance
•	Algorithmic composition of music
•	Intelligent ways of searching the web
•	Probability in sports
•	The elasticity equation of string
•	Digital signal processing
•	Light paths in universes with alternate physics
•	Playing 20 Questions with a Liar
•	Dirichlet’s Theorem on Arithmetic Progressions
•	Non-Orientable Knitting

Regular Faculty
Mira Bernstein (Executive Director, Mathcamp)
Interests: Algebraic Geometry, Mathematical Biology, 
Information Theory

Mark Krusemeyer (Carleton College)
Interests: Abstract Algebra, Combinatorics,  
Number Theory, Problem Solving

David Savitt (University of Arizona)
Interests: Number Theory, Arithmetic Geometry

Mohamed Omar (Caltech)
Interests: Combinatorics, Applied Algebraic Geometry, 
Discrete Optimization

Visiting Faculty
John H. Conway (Princeton)	•	One	of	the	most	creative	
thinkers of our time, John Conway is known for his ground-
breaking contributions to such diverse fields as knot theory, 
geometry of high dimensions, group theory, transfinite 
arithmetic, and the theory of mathematical games. Outside 
the mathematical community, he is perhaps best known as 
the inventor of the “Game of Life.”

Jim Gates (UMD) •	 Jim	Gates	uses	mathematical	models	
involving supersymmetry, supergravity, and superstring 
theory to explore nature.  One of his current focus areas 
includes Adinkras, a new mathematical concept, linking 
computer codes like those in browsers to the equations of 
fundamental physics as if our physical reality resides in the 
science fiction movie, “The Matrix.’”

Craig Sutton (Dartmouth) •	Craig	Sutton	works	on	prob-
lems in inverse spectral geometry, where one explores the 
extent to which the geometry of a manifold is encoded in the 
spectrum of its associated Laplace operator. Of particular 
interest to him is understanding whether we can “hear” the 
geometry of spheres and other symmetric spaces. 

Allan Adams (MIT) •	 Allan	 Adams	 works	 on	 
quantum versions of algebraic and differential geometry, 
and uses black holes in 5 spacetime dimensions to study  
high-temperature superconductors in the usual 4.

Kirsten Wickelgren (Harvard) •	 Kirsten	 Wickelgren	
would like to solve polynomial equations with loops on asso-
ciated surfaces. This was conjectured by one of the founders 
of modern algebraic geometry, Alexander Grothendieck. He 
has all of our admiration. 

Joe Rabinoff (Harvard)	 •	 Joe	Rabinoff	 studies	geometric	
objects over fields like the rational numbers, but equipped 
with a strange absolute value that would have made 
Archimedes’ head explode.  These objects turn out to be 
useful for doing things like solving Diophantine equations.

Josh Tenenbaum (MIT)	•	Josh	Tenenbaum	is	a	professor	
of Cognitive Science and a member of the MIT Computer 
Science and Artificial Intelligence Lab. In his research, 
he builds mathematical models of human and machine  
learning, reasoning, and perception. He thinks about neural 
networks, information theory, and statistical inference.

Spotlight on a Class
Set Theory as a Foundation for Mathematics (2011) •	
What is a number? Stop and think. Do you know? Do they 
even exist (as a mathematical concept)? Fortunately for all 
of mathematics, the answer is “yes”, and in this class we’ll see 
why. We’ll build the numbers you know and love from the 
natural numbers up through the reals. We’ll see how even the 
most basic properties that you never think about can be proved 
(such as the fact that addition is commutative: x + y = y + x). 
You’ve probably seen proof by induction, but I bet you’ve never 
seen a real proof that this common technique works. We’ll show 
that it is possible to rigorously prove it, once you’ve stated it 

carefully: if you have a statement P (. . .) and you want to show 
that P is true for each natural number n, then it’s sufficient to 
prove that P (0) and that P (k) implies P (k + 1). However, we 
can’t even think about proving that induction works without 
a very precise and rigorous definition of what numbers are in 
the first place! So, how can we define numbers? What is there 
more basic than numbers that we could build numbers out 
of? The answer is sets. You might know sets as “collections of 
objects”, but for us, those “objects” will themselves be sets. In 
fact, we’ll be able to start from just the empty set and build up 
everything you know about numbers (and more!), using only 
the logical concept of sets. It turns out that everything we study 
in mathematics can be expressed using sets, something I hope 
to convince you of by the end of the week.

Students
We never cease to be amazed at what a varied and  
interesting bunch of young men and women our students 
are! While everyone at camp shares a love of mathematics, 
their	 other	 interests	 run	 the	 gamut.	Each	 year’s	 camp	 is	 a	
collection of 115 students who are musicians and writers, 
jugglers, dancers, athletes and actors, artists, board game 
players, hikers, computer programmers, students of science 
and philosophy - all sharing their interests and experiences 
with each other.

Most of the students at camp come from North America, 
but many come from overseas. Students have come to camp 
from Bulgaria, India, Japan, Lithuania, Macedonia, Mexico, 
Poland, Romania, Saudi Arabia, Serbia, South Korea, 
Tanzania, Turkey, and many other places around the globe.

It is a testament to our students’ maturity and independence 
that they can be serious about doing math, while still finding 
so many different ways to have fun. Many camp activities 
are organized entirely by campers, and students routinely 
cite each others’ company as one of the best aspects of camp. 

Mentors and 
Junior Counselors

The residential staff at camp is made up of Mentors and 
Junior Counselors (“JCs”). Mentors are graduate students in 
mathematics and computer science; they teach most of the 
classes at camp, picking the course topics freely from among 
their favorite kinds of math. JCs, all of them camp alumni, 
are undergraduates who run the non-academic side of camp 
(from	field	trips	to	first	aid	to	frisbee	games).	Each	student	
is assigned a Mentor or JC as their residential advisor; RAs 
live on the same hall as their advisees and look out for them 
on a day-to-day basis. Like campers, the Mentors and JCs 
often return year after year to Mathcamp.

Beyond Math
Mathematical activities are scheduled for five days a week; 
whatever math happens on the other two days is purely 
informal. The weekend is reserved for relaxation and the 
incredible number of activities that quickly fill the schedule. 
All of these activities are optional, and students can choose 
simply to relax with friends.

Field trips in the past have included hiking, sea kayaking, 
whitewater rafting, amusement parks, and museums. Lots 
of activities happen on-campus, too: there are rehearsals for 
the choir and the contemporary a cappella group, juggling 
and salsa dancing lessons, improv, and even making berry 
pies. There is an annual team “puzzle hunt” competition, 
a talent show, and ice cream made with liquid nitrogen. 
Campers also organize many events themselves—from 
sports and music to chess and bridge tournaments—and 
each year, a group of students creates the camp yearbook.

“One cannot compare my ideas of what `I’m interested in math’ 
meant before and after Mathcamp.”

– Asaf Reich (Vancouver, BC, Canada)

“There was no pressure: the incentive to learn came from within.”
– Keigo Kawaji (Toronto, ON, Canada)

“Mathcamp took every limitation I thought I had—social, 
academic, and personal—and shattered it.”

– Andrew Kim (Dover, MA, USA)

“Mathcamp was definitely 
the most fun I’ve ever had.”

– Avichal Garg (Cincinatti, OH, USA)

“Go, just go! Trust me!”
 – Jian Xu  (Toronto, ON, Canada)

University of Puget Sound
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“Coming to Mathcamp has given me a community with which 
to interact, not just five weeks a year, but all year round.”

– Eric Wofsey (St Louis, MO, USA)
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