Mathcamp 2016 Tentative Four-Week Schedule

Time	Week 1		Week 2		Week 3		Week 4	
9:10	Introduction to Graph Theory (Marisa)		Dynamical Systems))) (Jane)		Advanced Topics in Sorting?		Asymptotics of Generating Functions	
	Point-Set Topology)) (Chris)		Field Extensions and Galois Theory (1/2)		[HR] Bad Domains, Bad Factorization (Alfonso Gracia-Saz)		Does ESP Exist?)) (Mira Bernstein)	
	Spin: Numbers as Rotations		Model Theory))) (Steve Schweber)		Nonzero-Sum Games $\hat{\mathcal{I}}$ (Pesto)		Knot Theory $\hat{\boldsymbol{\mathcal{J}}}$ (Jeff)	
	[HR] Statistical Modeling)) (Sam)		Neural Networks 🌶 (Kevin)		Pythagorean Triples, Diophantine Equations and Fermat's Last Theorem 🌶		[HR] Problem Solving: Polynomials うううう (Pesto)	
	[HR] Systems of Polynomial Equations))) (Nic)		[HR] Problem Solving: Induction 🌶 (Misha)		The Wallis Product $\mathbf{j} \rightarrow \mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}$ (Jon Tannenhauser)		Representation Theory of Finite Groups (2/2) グウウ (Mark)	
10:10	The Democracy of Number Systems 🍎 (Clifton Cunningham)		Almost Planar 🌶 (Marisa)		Field Extensions and Galois Theory (2/2)		From Matrices to Representations))) (Noah Snyder)	
	Cutting Surfaces into Silly Straws 🌶 (Assaf)	Board Game Theory (Assaf)	[HR] Extending Inclusion-Exclusion ググ (Jeff)		Graph Colorings $\hat{j}\hat{j}$ (Mia)		Harmonic Functions on Graphs	
	Generating Functions and Partitions 🌶 (Mark)		Multilinear Algebra 🌶)) (Nic)		[HR] Problem Solving: Symmetry, Parity and Invariants 🌶 (Joshua Zucker)		Ponzi Schemes in Infinite Groups (Fedya Manin)	
	[HR] Introduction to Group Theory) (Kevin)		[HR] The Word Problem for Groups)		The Topology and Geometry of Surfaces 🌶 (Jane)		Quantum Mechanics (Nic)	
	[HR] Problem Solving: Triangle Geometry))) (Zach)		[HR] Why Are We Learning This? 🌶 (Sam)		What Can We Exponentiate?		[S] Spectral Graph Theory $(\frac{1}{2})$)))) (Sachi)	
11:10	[HR] How Not to Prove the Continuum Hypothesis クククク (Susan)		[S] Building Mathematical Structures $(\frac{1}{2}) \not$ (Zach)		[HR,S] A Tale of Combs and Hedgehogs $(\frac{1}{2})$ (Alfonso + Chris)	א]	Burnside's Lemma 🌶	
	Huuuge Primes 🌶 (David)		Graph Minors))) (Pesto)		$[\mathbf{HR}] \text{ dCalculus } \mathbf{\dot{\mathcal{I}}} \text{ (Jeff)}$	I] Algeb	Harmonic Analysis on Abelian Groups)))) (Michael Orrison)	
	Linear Algebra (1/2)		History of Math) (Moon Duchin) K-Theory)))) (Don)		Projective Geometry 🌶	oraic ([HR] Mathcampers Show Presentations ŷ (Sam + Chris)	
	Models of Computation Simpler than Programming DD (Pesto)		Linear Algebra (2/2)))) (Mark)		[S] Random Graphs $(\frac{1}{2})$))) (Misha)	Groups	[S] Spectral Graph Theory $(\frac{2}{2})$ $\hat{j}\hat{j}\hat{j}$ (Sachi)	
	Sum and Product Puzzles 🌶 (Don)		[HR,S] The Banach–Tarski Paradox $(\frac{1}{2})$))) (Chris)		Representation Theory of Finite Groups (1/2) (Mark)) 6666	The Fundamental Group (Jane) (Jane) Cut That Out! (Zach) (Zach) Stupid Games on Infinite Sets (Susan)	
1:10	Combinatorial Games)) (Jane)		[S] Building Mathematical Structures $\left(\frac{2}{2}\right) \mathbf{\hat{j}}$ (Zach)		[HR] A Crash Course in Axiomatic Probability))) (Sam)	Don)		
	[HR] Introduction to Ring Theory グウ (Ari Nieh)		Chip Firing))) Group Actions))) (Sam Payne)(Don)		[HR,S] A Tale of Combs and Hedgehogs $(\frac{2}{2})$ <i>jjjj</i> (Alfonso + Chris)			
	[HR] Mathcamp Crash Course (Nina White)		Divergent Series 🌶		Finitely-Generated Algebras		The Word Problem for Hyperbolic Groups DDD (Assaf)	Random Groups))) (Assaf + Misha)
	Card Shuffling) (Zach)	de Bruijn Sequences	Geometric G	roup Theory (Susan)	[HR] Functional Programming		Trail Mix	TBA ククク (Po-Shen Loh)
	Analytic Number Theory ググググ (Sachi)		[HR,S] The Banach–Tarski Paradox $(\frac{2}{2})$ \dot{D} (Chris)		$ [S] Random Graphs (\frac{2}{2})$		Universal Properties))) (Don)	