Mathcamp 2020 Tentative Four-Week Schedule

Time	Week 1	Week 2		Week 3		Week 4
9 am	[HR] An inquiry-based approach to group theory)) (Katharine)	Combinatorics of tableaux ググ (Emily & Kayla)		Bairely complete))) (Ben)		(Relatively) prime complex numbers ググ (Emily)
	Cut that out! (Zach Abel)	Graphs on surfaces グク (Marisa)		Congruences of Bernoulli numbers and zeta values)))) (Eric)		Complexity theory)) (Linus)
	Determinantal formulas	Introduction to number theory		Geometric programming D (Misha)		The John Conway Hour グク → ググク (Mira & Misha)
	Introduction to graph theory	Markov chains and random walks 🍿		Gothic windows 🌶 (Kinga)	Spectral graph theory) (Ania)	The Kakeya needle problem
	[HR] Teaching math to computers	Oh the sequences you'll know $(Zach \ Abel)$		Regular expressions and generating functions)) (Linus)		Uncertainty principle)))) (Neeraja)
10 am	Cubic curves 🌶 🌶 (Mark)	[HR] Clopen for business: an inquiry-based approach to point-set topology DD (Katharine)		Extremal set theory: intersecting families) (Neeraja)		Brooks' theorem blues
	Hyperplane arrangements) (Emily)	Conflict-free graph coloring D (Pesto)		Fourier analysis 🌶 (Alan)		How not to prove the Continuum Hypothesis (week 2 of 2)
	Integration on manifolds	Quantum mechanics (Andrew Guo)		FUNdamental groups and friends: an introduction to topological invariants ())) (Katharine)		Representation theory (week 2 of 2)
	Introduction to linear algebra	Ramanujan graphs, quaternions, and number theory (Dan Gulotta)		How not to prove the Continuum Hypothesis (week 1 of 2)		So you like them triangles? ググ (Dennis)
	[HR] The bell curve))) (Mira)	Weierstrass approximation	Hilbert's space-filling curve	Representation theory (week 1 of 2) jjjj (TBA)		Solving equations with origami
Noon	Don't worry, these cats don't bite! (Basic category theory)	A Rubik's cube-based approach to group theory)) (Alan & Dennis)		Classifying complex semisimple Lie algebras J))) (Kayla)		Combinatorial game theory) (Tim!)
	[HR] Fourier something something boolean functions	Cantor, Fourier, and the first uncountable ordinal)))) (Ben)		Geometry of lattices (J-Lo)		[HR] Connections to category theory クカウク (Katharine)
	[HR] Introduction to analysis	[HR] Introduction to ring theory))) (Eric)		Grammatical group generation $\hat{\mathcal{P}}$ (Eric)	Let's reverse-engineer photoshop $\mathbf{\hat{y}}$ (Olivia Walch)	Extremal graph theory))) (Mia)
	[HR] Majorizing-Comparisons Solving of Problems (Pesto)	Modeling computation D (Mia)		[HR] Information theory		Fair squares (mod p) jj (Maya)
	[HR] Mathcamp crash course) (Susan)	Wallis and his product ク → ククク (Jon Tannenhauser)	$\dot{j} \rightarrow \dot{j}\dot{j}\dot{j}\dot{j}$ The Plunnecke–Ruzsa inequality $\dot{d}\dot{d}$ (Milan)		The John Conway hour $\dot{D} \rightarrow \dot{D}\dot{D}$ (Pesto & Tim!)	

Key: [HR]—Homework Required