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The summation

This class is about a single sum:

∞∑
n=1

dπne
7n

=
dπe

7
+
d2πe

72
+
d3πe

73
+ · · ·

Let’s use the most advanced techniques to evaluate this sum and
try to understand it.
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What WolframAlpha says
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Questions

Looking at that approximation, there is a natural guess to make:
obviously, the exact value 926 485

1 235 313 .

Mathematica says. . . this is pretty good!

Questions we still have:

1 Why was it so close to 3
4?

2 Is it actually 926 485
1 235 313?

3 If not, is it equal to anything nice?
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Where does 3
4 come from?

Things we know about π: it is a bit bigger than 3.

For small values of n, then, we expect to get dπne = 3n + 1.

We have

∞∑
n=1

3n + 1

7n
=
∞∑
n=1

1

7n
+ 3

∞∑
n=1

n

7n
=

1

6
+ 3 · 7

36
=

3

4
.

Of course this is not going to give us the correct terms. But the
first wrong term is when n = 8:

3n + 1

7n
=

25

78
dπne

7n
=

26

78

This is going to be most of the error, and 1
78

is only about
0.000000173 . . . .
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Aside: computing
∞∑
n=1

n

7n

Write n
7n as a sum:

∞∑
n=1

n

7n
=
∞∑
n=1

n∑
k=1

1

7n
.

Swap the order of summations:

∞∑
n=1

n∑
k=1

1

7n
=
∞∑
k=1

∞∑
n=k

1

7n
.

Use the geometric series formula. . . twice:

∞∑
k=1

∞∑
n=k

1

7n
=
∞∑
k=1

1/7k

1− 1
7

=

1/71

1− 1
7

1− 1
7

=
7

36
.
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The error in 926 485
1 235 313

What’s up with our second guess, 926 485
1 235 313?

We know a bit more about π: we have π ≈ 22
7 . Computing the

sum
∞∑
n=1

⌈
22
7 n
⌉

7n

is much more annoying, but works the same way as our previous
sum, and gives 926 485

1 235 313 as an answer.

What is the error here? Well, a third, much better approximation
to π is 355

113 .

The first time
⌈
22
7 n
⌉

and
⌈
355
113n

⌉
disagree is when n = 113. This

contributes most of the error: 7−113 ≈ 3.19× 10−96.
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The answer is not rational

Theorem

The value of
∞∑
n=1

dπne
7n

is irrational.

I will only sketch the proof, leaving out a few details. Assumptions:

1 There is no end to approximations of π like
22
7 ,

355
113 ,

104 348
33 215 , . . . .

2 Consecutive approximations have a nice relationship: e.g.,⌈
22
7 n
⌉

and
⌈
355
113n

⌉
first disagree at n = 113.

These are both true for all irrational numbers; nothing special
about π.
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Rational numbers are hard to approximate!

Rational numbers are hard to approximate! Here is a number line
of the rational numbers in [0, 1] with denominator at most 20:

There are gaps around fractions with small denominator, like 1 or
1
3 or 3

4 .

Algebraically: if p
q 6=

3
4 , then

∣∣∣34 − p
q

∣∣∣ = |3q−4p|
4q ≥ 1

4q .
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Our sum is easy to approximate!

Our sum is easy to approximate: it is within about 7−8 of 3
4 .

If
∣∣∣34 − p

q

∣∣∣ ≈ 7−8, then q is at least about 78

4 .

There’s more: our sum is within about 7−113 of 926 485
1 235 313 .

If
∣∣∣ 926 485
1 235 313 −

p
q

∣∣∣ ≈ 7−113, then q is at least about 7113

1 235 313 .

These lower bounds keep going. The next one will be about 733 215

7113
,

by comparing the sum with 355
113 to the better approximation

π ≈ 104 348
33 215 .

Our sum cannot be rational: it can be approximated by rational
numbers much better than any rational number ever could!
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Further reading

These slides: https://tinyurl.com/shadysum

The inspiration for the shady sum: a paper called Strange Series
and High-Precision Fraud by Borwein and Borwein.

More about approximating π (and other numbers):
http://www.ams.org/publicoutreach/feature-column/

fcarc-irrational1

https://tinyurl.com/shadysum
http://www.ams.org/publicoutreach/feature-column/fcarc-irrational1
http://www.ams.org/publicoutreach/feature-column/fcarc-irrational1
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