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9:10 Classes

2-adic computer science ( , Eric, TWΘFS )
In this class you’ll learn why
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is in fact an incredibly natural and sensible thing for computers to do when dealing with negative
numbers (and no, that’s not a typesetting error). We will explore some intersections between computer
science (how computers store various types of numbers) and algebraic number theory (how number
theorists store various types of numbers). We’ll learn some basics about how to analyze the runtime of
algorithms, and compare a few algorithms for computing xy for very very large integers x, y. The result
we’re aiming towards is an absurdly efficient algorithm for performing exponentiation based around
the use of p-adic numbers, which are a tool developed in algebraic number theory for combining ideas
from real analysis and modular arithmetic.

This course is intended as a first introduction to a lot of computer-related concepts; if you know
how floating point numbers work and you’re comfortable figuring out the asymptotic runtime of some
classic sorting algorithms you probably don’t have much to learn from days 1 and 2 of the class. Days
3 and 4 of the class will focus on developing the p-adic numbers, and we’ll tie the computer science
and p-adics together on day 5.

Homework: Recommended

Prerequisites: Fluency with modular arithmetic, say at the level of the statement “x is invertible mod
n iff gcd(x, n) = 1.” You don’t need to know anything at all about computer science or programming.

Common continuity ( , Zoe, TWΘFS )
Continuity is at the heart of point-set topology. A huge tool for classifying topological spaces is
considering what kinds of functions on these spaces are continuous. In this class, we’ll look at what
makes functions continuous and why continuity is an appealing property that we like.

But! We will also look at why continuity is a bad, unappealing property that we don’t like. We’ll
see why continuity is a much weaker property than we often imagine it to be, and we will carefully
examine gross spaces and gross functions that nevertheless manage to be continuous.

Homework: Recommended

Prerequisites: None
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Measuring fairness ( , Moon Duchin, TWΘFS )
This class is about one very specific kind of measuring fairness. Namely, what does it mean for an
electoral district to be unfairly tilted to some political party, and how would you certify, by contrast,
that a districting plan is partisan-fair? We will go from zero (no assumptions that you know anything
about U.S. politics, in particular!) to literal expert level. The math involved is elementary but, trust
me, pretty cool.

Homework: Recommended

Prerequisites: None

Representation theory of finite groups (week 1) ( , Mark, TWΘFS )
It turns out that you can learn a lot about a group by studying homomorphisms from it to groups of
linear transformations (if you prefer, groups of matrices). Such a homomorphism is called a represen-
tation of the group; representations of groups have been used widely in areas ranging from quantum
chemistry and particle physics to the famous classification of all finite simple groups. For example,
Burnside, who was one of the pioneers in this area along with Frobenius and Schur, used represen-
tation theory to show that the order of any finite simple group that is not cyclic must have at least
three distinct prime factors. (The smallest example of such a group, the alternating group A5 of order
60 = 22 · 3 · 5, is important in understanding the unsolvability of quintic equations by radicals.) We
may not get that far, but you’ll definitely see some unexpected, beautiful, and important facts about
finite groups in this class, along with proofs of most or all of them. With any luck, the first week of
the class will get you to the point of understanding character tables, which are relatively small, square
tables of numbers that encode all the information about the representations of particular finite groups;
these results are quite elegant and very worthwhile, even if you go no further. In the second week, the
chili level may ramp up a bit (from about π+0.4 to a true 4) as we start introducing techniques from
elsewhere in algebra (such as algebraic integers, tensor products, and possibly modules) to get more
sophisticated information.

Homework: Recommended

Prerequisites: Linear algebra, group theory, and general comfort with abstraction. (The “eigenstuff”
material from the week 2 class will come up after a while, but I can catch you up on that outside class
time as necessary.)

Schubert calculus ( , Kayla, TWΘFS )
Have you heard of Hilbert’s iconic list of 23 problems? Have you heard of Hilbert’s 15th problem? It is
only partially resolved and in this class, we are going to see some of the progress that has been made.
Hilbert’s 15th problem has to do with enumerating intersections of subspaces in a fixed ambient space
and asks to formalize Schubert’s “calculus” for counting these intersections. . . but this calculus isn’t
one you’ve seen on an AP exam and Schubert’s proof using “Principle of Conservation of Number”
was quite the unfinished symphony in the math community’s eyes.

Come see how the world of Schubert calculus has become a beautiful intersection of geometry,
topology, algebra and combinatorics. You Schur won’t be disappointed by taking another calculus
class.

Homework: Optional

Prerequisites: Linear algebra (more specifically, row reduction of matrices and elementary row opera-
tions)
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10:10 Classes

Diophantine approximation ( , Travis, TWΘFS )
When judging for a Rule 2 violation, you have to see just how irrational an idea really is. And the
same goes for real numbers: How well can you approximate irrational numbers by rational ones which
will slip under the wary staff’s radar? We’ll start by proving that for every irrational number α, there
are infinitely many rational numbers p/q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

We’ll see why this is interesting, surprising, and useful. We’ll solve a puzzle. And then we’ll follow in
Liouville’s footsteps and generalize this result to transcend this mortal coil.

Homework: Recommended

Prerequisites: None

Integer right triangles ( , David Roe, TWΘFS)
You probably recognize the triples (3,4,5) and (5,12,13), the first few of the infinitely many Pythagorean
triples that measure triangles with integer side lengths. We will start by exploring a geometric method
that generates Pythagorean triples, generating a beautiful parameterization of all possibilities. We
will then focus on the area of these triangles, while allowing the edges to have rational lengths. The
examples above show that 6 and 30 are possible, but what about 7 or 15? We will only scratch
the surface of this question, but will dig deep enough to get a glimpse of the profound conjectures
underneath.

Homework: Recommended

Prerequisites: None

Nonstandard analysis ( , Aaron, TWΘFS )
The early history of calculus is filled with sketchy computations about infinitesimal quantities, which
George Berkeley criticized as follows:

“They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call
them the Ghosts of departed Quantities?”

The rigor of calculus was later rescued with limits, but there is another approach. In this class, we
will construct the hyperreals, a system of numbers that includes real numbers, infinitesimally small
numbers, and infinitely large numbers. We will then see how to rigorously do calculus the infinitesimal
way.

Homework: Recommended

Prerequisites: Calculus (preferably with epsilon-delta proofs)

On beyond on beyond i ( , Assaf, TWΘFS )
You may have heard of the quaternions (perhaps in an earlier class by a similar name, or at some
colloquium about ex), but did you know that they also encode secret and hidden geometries of 3- and
4-dimensions? Just by allowing multiple square roots of −1, we get a number system on R4 which
allows us to rotate spheres in a snap, draw knotted vector fields in the 3-dimensional sphere S3, and
create insane images such as:
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This class is about the geometry of the quaternions, not the algebra. As such, “On beyond i”
is not a required prerequisite.

Homework: Recommended

Prerequisites: Linear algebra, knowing what a dot product is would be helpful

Special relativity ( , Nic, TWΘFS )
Around the beginning of the twentieth century, physics was undergoing some drastic changes. The
brand-new theory of electromagnetism made very accurate predictions, but if you took the equations
literally they implied some bizarre things about the structure of space and time: depending on their
relative velocities, different observers could disagree about the length of a meterstick, or how long it
takes for a clock to tick off one second.

For a long time, a lot of creative excuses were invented for why we shouldn’t take the equations
literally (including one with the incredibly Victorian name “luminiferous aether”) but, in what was
probably the second most unsettling event in early twentieth-century physics, all of them failed. The
physics community was left with only one viable conclusion: space and time really do behave that
way!

In this class, we’ll talk about the observations that forced physicists to change their ideas about
space and time, and how the groundwork of physics had to be rebuilt to accommodate them. We will
see how, as the physicist Hermann Minkowski said, “Space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind union of the two will preserve an independent reality.”
At the end, we’ll also briefly look at how to revise the classical definitions of momentum and energy
and see why we should believe that E = mc2.

Homework: Optional

Prerequisites: Enough physics to know what momentum and kinetic energy are, but no more than
that. No prior exposure to special relativity expected!

Szemerédi’s {theorem, regularity lemma} ( , Yuval, TWΘFS )
In 1975, Szemerédi proved that if ε > 0 is fixed and N is sufficiently large, then any set A ⊆
{1, 2, . . . , N} of size |A| ≥ εN contains an arbitrarily long arithmetic progression. Although this
is a number-theoretic statement, Szemerédi’s proof was entirely combinatorial. At the time, this was
perhaps the most complicated and intricate combinatorial proof ever devised; the following diagram
from Szemerédi’s original paper shows merely the logical structure of the argument, and not even any
of the ideas.
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In proving this theorem, Szemerédi introduced a tool (now called Szemerédi’s regularity lemma, found
in the circle L1 above), which is now itself one of the most important tools in all of graph theory.
Roughly speaking, it says that all “big” graphs look “the same”, and that we can actually more or
less forget about where the edges of our graphs are. This may sound stupid, but its power cannot be
overstated.

In this class, we’ll approach Szemerédi’s theorem from the perspective of Szemerédi’s regularity
lemma. We’ll focus primarily on the graph theory, but we’ll see how graph-theoretic insights can yield
number-theoretic results, including seeing a complete proof of Roth’s theorem (the case of three-term
arithmetic progressions). Along the way, we’ll see other applications of the regularity lemma; for
example, the Erdős–Stone–Simonovits theorem, the main result of my Extremal graph theory class,
will be a simple homework exercise once we understand the regularity lemma.

Homework: Recommended

Prerequisites: Graph theory

11:10 Classes

Arrow’s impossibility theorem ( , Ben, TWΘFS)
If you’ve heard of Arrow’s Impossibility Theorem before, it might have in some form like “a good
voting system doesn’t exist,” which leaves a bit to be desired, as a theorem statement. What do we
mean by “good,” or by “a . . . voting system,” or by “a good voting system,” for that matter?



MC2022 ◦ Week 3 ◦ Classes 6

Our first mission in this class is to clear up what, exactly, Arrow’s Impossibility Theorem says. Our
third mission is to prove it. If you’re wondering about the second mission—it’s to define and briefly
discuss ultrafilters, which turn out to be useful for that “prove it” mission we just mentioned.

Time permitting, we might also get to talk about the Gibbard–Satterthwaite Theorem, which says
that there’s always1 some voter who shouldn’t vote for who they want to win.

Homework: Recommended

Prerequisites: None

Buffon’s needle ( , Ben, TWΘFS )
Suppose that I draw a bunch of lines parallel to each other, spaced one inch apart, and drop my
standard-issue one-inch needle onto them randomly. How likely is it that the needle will cross one
of the lines? More generally, what if the needle is longer, shorter, or is actually a squiggly piece of
uncooked pasta?

There are, broadly speaking, two approaches to this. One of them involves setting up some number
of integrals to figure out these probabilities. This approach is entirely valid and will work, but there’s
another approach that just relies on probability theory.

So, in this class we will compute no integrals, and use no calculus2. Instead, we will see a marvelous
display of the glorious power called “linearity of expectation,” and that’s all we’ll need.

Homework: Recommended

Prerequisites: None

Commutative algebra and algebraic geometry ( , Mark, TWΘFS )
In its classical form, algebraic geometry is the study of sets in n-dimensional space that can be
described by polynomial equations (in n variables). This is both a very old and a quite active branch
of mathematics, and for over a century now it has relied heavily on commutative algebra—that is,
on the properties of commutative rings and related objects. We’ll start by looking at some of those,
including prime and maximal ideals and a review of quotient rings, and we’ll see how the algebra can
be used to give us information about the geometric sets. For instance, we’ll use the algebra to show
that if a set can be given by polynomial equations, then a finite number of such equations will do.
We may also see how to translate the idea of dimension into the language of algebra. There may well
be cameo appearances by the axiom of choice (in the guise of Zorn’s lemma) and a bit of point-set
topology (on a space whose points are ideals!), but you don’t need to know any of those things going
in. It’s quite possible that the TBD class listed in the week 4 schedule will be a continuation of this
class—that depends on how much interest there seems to be. If that happens, I hope, among other
things, to prove Hilbert’s famous Nullstellensatz (“Theorem of the Zeros”), arguably the starting point
for modern algebraic geometry, at least for the case of two variables. (The theorem will presumably
be stated and used in the first week.)

Homework: Recommended

Prerequisites: Familiarity with polynomial rings, ideals, and quotient rings.

Curves that classify geometry problems ( , J-Lo, TWΘFS )
In this class we will turn geometry problems into curves. For example, consider the following three
problems:

(0) How many triangles have integer side lengths and a 60◦ angle?

1OK, not literally always, just usually
2. . . OK we’ll want to think a little bit about limits but I promise that’s all
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(1) How many triangles have integer side lengths and integer area, with two of the sides in a ratio
of 3 to 4?

(2) How many pairs of triangles with integer side lengths, one right and one isosceles, have equal
area and equal perimeter?

(Do not count scaled solutions separately; for example, in problem 0, you should only count one
equilateral triangle.) Each problem can be solved by finding rational points (points (x, y) with x and
y rational numbers) on a certain curve:

0.

x2 − xy + y2 = 1

1.

y2 = x(x− 9)(x− 16)

2.

2y2 − (x3 − x+ 6)y + 4 = 0

Come to this class to learn how to convert geometry problems into curves, to explore some tools we
can sometimes use (such as stereographic projection and elliptic curve addition) to find the points on
these curves that we’re looking for, and to discuss some unsolved problems about right triangles.

Homework: Recommended

Prerequisites: None

The 17 wallpaper patterns ( , Emily, TWΘFS)
No, I’m not talking about the wallpaper at your grandma’s house—I’m talking about mathematical
wallpaper! These are two dimensional repetitive patterns which are distinguished based upon their
symmetries, such as the example below. To each of these we can assign a group which consists of
the transformations of the plane which preserve the pattern. It turns out there are exactly 17 of
these—what a strange number! Come find out why this is the case.
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Homework: Recommended

Prerequisites: Group theory, linear algebra

Ultrafilters and combinatorics ( , Steve, TWΘFS )
Combinatorics is full of results saying that functions on an infinite set are well-behaved “a lot” of the
time. An easy example of this is the Pigeonhole Principle: given a function f : N → X with X finite,
no matter how crazy f is there is always some infinite set S ⊆ N on which f is constant. A slightly
trickier instance of this is Infinite Ramsey’s Theorem (for pairs): any 2-coloring of pairs of natural
numbers has an infinite homogeneous subset. (If you haven’t seen this before, don’t worry, we’ll prove
it in class.)

However, what if “infinite” just isn’t big enough? For example, for a function f : N → X with X
finite, maybe we want f to be constant on a set which is not only infinite but closed under (finite)
sums. Can we always find such a set? If so, what’s the most ridiculous way we can prove it?

In this class we’ll do combinatorics using ultrafilters—bizarre, beautiful objects from the mysterious
land of set theory! Ultrafilters cannot even be proved to exist without the axiom of choice, but that
won’t stop us from using them to build big homogeneous sets. Oh, and we’ll also need to say the
words “compact space,” “topological semigroup,” and “idempotent” a few times.

Homework: Required

Prerequisites: None

Zero knowledge proofs ( , Dan Zaharopol , TWΘFS )
Picture this: You want to convince someone that you know something is true, but you don’t want that
person to actually be able to reconstruct the proof themselves (or to have any advantage in doing so).
For example, maybe you want to prove that a graph has a Hamiltonian cycle, but you want to give
absolutely no information to the other person that would allow them to find the cycle themselves—you
just want to convince them that it exists!

You might think, “Surely, that isn’t possible!” It sounds outlandish that you could prove to someone
that you know a cycle without showing it to them. And yet you can; doing so is called a zero-knowledge
proof, and besides being really cool it also has applications all across different areas of cryptography.

In this class, we’ll see two things: how to accomplish certain zero-knowledge proofs, and how to
give a rigorous definition of them. In particular, it’s not just interesting that we can do it, but also
that we can write down precisely what it means to prove something without sharing any knowledge.
This class will be a chance to explore how that works and to get more insight into how both computer
science and cryptography are formalized mathematically.

Homework: Recommended

Prerequisites: None, but some knowledge of graph theory or big-O notation will be helpful. If you’ve
seen formalized language around computer science, the class will be easier.

1:10 Classes

Hyperbolic geometry ( , Arya, TWΘFS )
In normie Euclidean geometry, the sum of angles of a triangle is always equal to 180 degrees, areas
are computed by actually multiplying two lengths, and inverting across circles does spooky things.
Imagine drawing a line through a point parallel to some given line, and NOT being able to draw
a second one? Dealing differently with triangles that are clearly similar, just because SoMeOnE
mAdE a triangle bIg? Drop the blindfolds of Cartesian coordinates and join this class to free your
imagination and learn some hyperbolic geometry! We shall talk about different models of hyperbolic
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spaces, isometries, hyperbolic trigonometry, analogues of theorems from Euclidean geometry, and why
“hyperbolic metrics are the natural geometric structures on almost all surfaces.”

Homework: Recommended

Prerequisites: Knowing what complex numbers are, some familiarity with sine rule and cosine rule.

In-fun-ite groups ( , Narmada, TWΘFS )
If you’ve ever thought “There’s no way groups can be this nice,” then this is the perfect class for you.
Halloween has come early this year and we’re going to be looking at some truly monstrous groups. It
all started when we let them be infinite. . .

We’ll start by seeing that even the free group on two generators can’t be trusted. Then, we’ll look
at how the Axiom of Choice plays into the structure of free groups and free abelian groups. For the
grand finale, we’ll study a (still unsolved!) problem that has been called the equivalent of Fermat’s
last theorem for group theory.

Homework: Optional

Prerequisites: Group theory: talk to me if you have questions!

Machine learning (NOT neural networks) ( , Linus, TWΘFS )
Netflix wants to recommend me TV shows that I will like. To do this, they analyze a giant matrix of
people and their ratings of TV shows and movies. When a user rates a movie, Netflix learns one entry
of this matrix; their goal is to find patterns in their dataset and use them to predict the unknown
entries.

In 2006, Netflix offered $1000000 to the first team that could beat their internal prediction algorithm
by 10%. This problem embodies the second era of machine learning, linear algebra on big data. In
this class, we’ll show off (a simplified version of) a winning algorithm.

We’ll also explore the first era of machine learning, classical PAC-learning algorithms, full of sharp
combinatorial algorithms with strong provable guarantees.

We won’t touch on the third era, the neural network jamboree, unless I go crazy on Day 5. (Why
not? Because they can’t prove anything. . . )

Homework: Recommended

Prerequisites: Linear algebra. Also it’ll help to have seen linearity of expectation.

Problem solving: graph theory ( , Misha, TWΘFS )
In this class, we will solve problems. Some of these will come from math competitions, some of these
I made up myself, and some of these I found “in the wild.”

Some of our problems will be questions about graphs, and some of them are questions that we can
model—and solve—with graph theory. There are few ideas from graph theory that will be especially
important:

• Using the handshake lemma and Euler’s formula.
• Matchings in bipartite graphs and Hall’s theorem.
• Trees, their properties, and what they tell us about connected graphs.

We will work through problems together every day in class and see some of the key ideas involved
in solving them. If you want to get the most out of this class, you should work on the remaining
problems on your own during TAU!

Homework: Recommended

Prerequisites: Basic familiarity with graphs. Ideally, nothing I mentioned in the blurb should scare
you; if it does, but you still want to take the class, talk to me!
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The continuum hypothesis (week 2) ( , Susan, TWΘFS )
This week we proved that Martin’s Axiom implies the existence of a dominating function for uncountable-
but-not-continuum-sized sets of functions from N to N. We also proved the Löwenheim–Skolem theo-
rem, showing that we can create a little tiny countable set theoretic universe, and saw the Mostowsky
collapse construction for making sure that countable universe is transitive. We’re now deep in the
weeds, trying to figure out how to formally adjoin filters to set theoretic universes. Want to see the
rest? Tune in to the exciting conclusion of the continuum hypothesis!

Homework: Recommended

Prerequisites: The continuum hypothesis, week 1

Colloquia

Everyone hates analysis (Charlotte, Tuesday)
It is a truth universally acknowledged that everyone hates analysis. Nowhere is this more true than
at Mathcamp. When Mathcampers see a class tagged “analysis,” they quickly avert their eyes, in
fear that they will be turned to stone lest they read the blurb in full. In this colloquium, I will make
you absolutely miserable for approximately fifty minutes. In fact, you will almost surely leave this
colloquium hating analysis even more than you do right now.

Hyperspheres (David Roe, Wednesday)
Draw a square, divide it into four equal squares, and then inscribe a circle within each. Within those
four circles, you can fit another smaller circle. We can draw this setup on a blackboard, and Euclidean
geometry gives us the tools to compare the sizes of all the objects involved. But what happens when
we increase the dimension? This thought experiment has an interesting answer, and will lead us into
the broader world of sphere packing, an area of mathematics with connections to error correcting
codes, chemistry, number theory, hyperbolic geometry and string theory.

High-dimensional oranges (Travis, Thursday)
You know oranges; you might even know and love them. Maybe they’re your favorite fruit that can
occasionally be found in the dining hall. As a rule, they’re not very interesting: They just sit there and
maybe roll around a bit, awaiting their eventual end. But put on a pair of Hi-Tek Xtra-Dimensional
Power GogglesTM (patent pending), and you’ll find that oranges contain multitudes. We’ll plunge the
depths of this hidden knowledge to learn about the geometry of spheres with many, many dimensions
and how the measurement of volume is a much more tricksy concept than you may have been led to
believe.

Heisenberg geometry (Moon Duchin, Friday)
I will tell you all about a world where walking around in a circle causes you to involuntarily levitate.
This is nilpotent geometry, with the innocuous-looking 3-dimensional Heisenberg group as the gateway
drug. Geometry meets groups meets analysis meets robots. . . . . .
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