Mathcamp Schedule for Friday, July 14th

Schedule changes for Friday

Time	Room	Friday
8:00-9:00	IDX Dining Hall	Breakfast
9:10-10:00	CCM 442	Infinite Ramsey theory クウウ (Susan)
	Ireland 114	Representation theory of the symmetric groups
	JLC 301	[HR] Epsilons and deltas 🌶 (Ben & Charlotte)
	JLC 302	Beyond inclusion/exclusion)) (John Mackey)
	JLC 305	What are your numbers worth? \mathcal{D} (Eric)
10:10-11:00	CCM 233	Introduction to model theory ウク (Krishan)
	CCM 442	Introduction to cryptography DD (Ian)
	Ireland 114	Mechanics of fluid flow DD (Neeraja)
	JLC 301	Polygons, friezes, and snakes — oh my ! $\hat{\boldsymbol{\mathcal{Y}}}$ (Kayla)
	JLC 305	[HR] Problem solving: triangle geometry)) (Zach Abel)
11:10-12:00	CCM 442	Gödel's incompleteness theorems DD (Steve)
	CCM 233	Introduction to ring theory 🌶 (Kevin)
	Ireland 114	What actually are the real numbers, anyway?)) (Dan Zaharopol)
	JLC 301	Elliptic curves 🌶 🜶 (Ruthi Hortsch)
	JLC 302	The Wythoff array 🌶 (Della)
	JLC 305	When will this end??? <i>(Arya)</i>
12:00-1:00	IDX Dining Hall	Lunch
1:10-2:00	CCM 442	Polytopes (Week 1 of 2)
	CCM 444	First, choose randomly
	JLC 301	Randomized vs. deterministic computation
	JLC 302	Packing permutation patterns
	JLC 305	Introduction to graph theory)) (Tim!)
2:00-4:00	EATS	TAU
4:10-5:00	JLC 30x	Project selection fair (Staff)
5:30-7:00	IDX Dining Hall	Dinner
		1

Surprise extra class at 11:10

What actually are the real numbers, anyway? ()), Dan Zaharopol, Friday only)

Have you ever thought about just how weird the real numbers are? Naturals, integers, rationals... all countable. Hit the reals, and WHAM, uncountable. The rationals feel like they should be a nice little line, but you could waggle your infinitely-thin finger right through the "hole" at $\sqrt{2}$. Somehow the reals spackle that hole right up, but to do it they have to break the barrier from countable to uncountable?!? And don't even get me started on how you don't just have the rationals (countable), and algebraic numbers (zeros of integer polynomials—also countable), but also the transcendental numbers (uncountable, and so weird that we don't even know if $e + \pi$ is transcendental although we know that both e and π are)!

But ask someone to tell you what the real numbers *are*, and they're like, "eh, whatever, just take all infinite decimals or something."

Nonono, we should build them. There are actually lots of (equivalent) ways to build them, but Dedekind cuts are one of the simplest ways to plug all those holes in \mathbb{Q} . We'll see how to do it, and then go back to elementary school as we define addition, subtraction, multiplication and division of real numbers!

Homework: Recommended

Class format: Interactive lecture

Prerequisites: None, except a good basis in arguments about countability is helpful

Note: the S. D. Ireland Global Business Center (or "Ireland") is a building adjacent to Rosendaal Courtyard (the area outside EATS). You can also get there by a walkway from the 4^{th} floor of CCM.

Project selection fair locations

	In JLC 301		In JLC 302	
Allison	Flow Free	Ania and Mia	Plan a math circle session	
Allison and Gloria	Make something!	Della	Build a Turing machine in Minecraft	
Ben	Classical cryptanalysis	Della	Read a paper about gadgets	
Ben	Throwing stuff and catching it	Della	Solve open problems about gadgets	
Ben and Steve	Abstract functional analysis reading project	Mia	Create your own adventure pictorially!	
Ian	Mathcamp Sudoku Project (MCSP)	Misha	Drawing toroidal maps	
Steve	Logic reading: nonclassical propositional logics	Misha	Master countless short papers	
Steve	Multiplayer combinatorial games	Misha	Soma Cube origami	
Tanya	Mathematical literature or literary mathematics	Travis	Reimagining school	
Tanya	Mathematics and its impact on society	Travis	Write a fairy tale	

	In JLC 304	In JLC 305		
Arya	Brethren of traveling pants	Charlotte and Narmada	Crossover episode	
Arya	Hyperbolic hyperbolic geometry	Eric	Combinatorial music	
Kayla	Join the Cluster Clan	Eric	Advent of code	
Kayla	Join the Cluster Clan * extreme addition*	Eric and Narmada	Math Camp Student Parsely	
Kevin	Learn German (to read a paper!)	Eric and Tim!	Learn change ringing	
Kevin and Raj	Quantum groups and crystal bases	Krishan	Theorem proving in Lean	
Kevin and Raj	What is Schubert calculus?	Narmada	Become ambidextrous	
Neeraja	An algorithm for the Borsuk–Ulam theorem	Tim!	Evasiveness & Qualifying Quiz 2022 problem 6	
Neejara	Philosophy of math	Tim!	Make a math video	
Neeraja	The Szemerédi–Trotter theorem	Tim!	Mathematical engineering with Arduino	

Talk to any staff about project ideas of your own! If we can't help you, we'll guide you toward someone who can.