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9:30 Classes

5 Proofs That It Is Impossible To Tile A 10 × 10 Square By 1 × 4 Rectangles ( , Nikita,
TWΘFS )
Can you tile a 10 × 10 square with 1 × 4 tiles? You can’t, and I know five proofs of it, all using
surprisingly different ideas. We will explore one of the following ideas per day: colorings, linear
programming, polynomial ideals, group theory and induction.

Homework: Recommended

Class format: Interactive lecture

Prerequisites: None.

A Tour Of Paradox ( , Purple, TWΘFS )
This class has a new topic every day, all of which are .

(1) A Tour of Paradox A: This Sentence Is A Lie
Paradoxes of self-reference build contradictions from objects which reference themselves. We
will build from the liar’s paradox to Russell’s paradox, and discuss the ideas behind founda-
tional solutions to such paradoxes.

(2) A Tour of Paradox B: Achilles Can’t Catch A Tortoise
Zeno’s paradox of motion argues that, by the time Achilles has caught up to where a tortoise
was, the tortoise has moved on; thus Achilles can never catch the tortoise. It is arguably
resolved by viewing motion as a continuous process and using the machinery of calculus. We
will introduce this paradox and its relationship to infinite sums and calculus.

(3) A Tour of Paradox C: An Empty Pile is a Heap
Many paradoxes of identity, like the sorites paradox and the ship of Theseus, deal with the
fundamental issue that coarsely-defined statements like “this is a heap of sand” have fuzzy
boundaries when affected by continuous or highly-granular processes. One possible resolution,
phrased in modern mathematical language, is to accept a many-valued or continuous logic in
which a statement can occupy a range of truth-values between true and false. We will discuss
such paradoxes and proposed resolutions of this form.

(4) A Tour of Paradox D: If The Eagles Lost The Superbowl, The Sun Would Fail To
Rise
The statement in the title is true, if you take the material conditional—anything follows from
a false antecedent! (Go birds.) This is one of many examples of so-called paradoxes of the

1



MC2025 ◦ Week 4 ◦ Classes 2

material conditional, where our formal notion of implication disagrees with our casual linguistic
use of the word. We will discuss several such issues in order to motivate relevance logic, which
features a stronger implication resolving many issues of this form.

(5) A Tour of Paradox E: Student Choice
The final stop on our tour of paradox. During the week, we will decide together on a final
paradox to cover.

Homework: None

Class format: Interactive lecture

Prerequisites: None

Einstein’s Theory Of Gravity 2: General Relativity ( , Laithy, TWΘFS )
This is the second of a series of classes on General Relativity.

Having understood the fundamentals of special relativity, we can now interpret and incorporate
gravity in this new geometric perspective of spacetime. We will quickly discover that Newton’s theory
of gravity, in which he interprets gravity as a force between objects with mass, is inconsistent with
the new theory of spacetime (special relativity). Einstein’s revelation is that gravity should instead
be interpreted as a manifestation of the curvature of spacetime caused by the matter around. This is
called his theory of general relativity. He reformulated Newton’s law of gravity, which relates the force
of gravity with the matter density, to another equation in which he relates the curvature of spacetime
with the matter density. These equations describe how matter determines the curvature of spacetime;
they are the famous Einstein’s field equations. In this geometric perspective, the motion of particles
is no longer described by Newton’s F = ma, but by the famous geodesic equation, which tells us how
free particles follow the straightest possible paths through curved space.

To describe this mathematically requires differential geometry on curved manifolds. We’ll develop
the necessary tools: tensor calculus, covariant derivatives, parallel transport, Christoffel symbols,
the Riemann curvature tensor, and the metric tensor. These allow us to write precise equations for
how spacetime curves. The statement that objects follow straight paths in curved space becomes
the geodesic equation—a system of coupled differential equations. Einstein’s field equations, Rµν −
(1/2)gµνR = Tµν , relate spacetime curvature to matter and energy distribution.

Homework: Recommended

Class format: Interactive lecture

Prerequisites: Special relativity and courage to dive into something completely out of your reach.

Mathematical Logic, or How We Know We’re Not Wasting Our Time (Completely) ( ,
Maya, TWΘFS )
Mathematical logic takes a “meta” view of mathematics, and asks questions about what is true and
what is provable — and what the relationship between truth and provability is. Lucky for us, they are
indeed related — but this isn’t obvious, and in fact, it isn’t even obvious what we mean by “truth”.
In this course we will say what we mean when we say a mathematical statement is true, and prove the
theorems that establish the links between truth and provability. These are big and important facts,
not to mention very cool.

Homework: Recommended

Class format: Interactive lecture

Prerequisites: This class has no specific prerequisites, but it will make no sense if you haven’t seen
a few different mathematical contexts (linear algebra, group theory, calculus all count as different
contexts).
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Representation Theory of Finite Groups ( , Mark, TWΘFS )
This is a continuation of the week 3 course. If you didn’t take that course but you want to join now,
please consult with Mark.

Homework: Recommended

Class format: Interactive lecture

Prerequisites: Week 1 of this course, or equivalent knowledge

10:30 Classes

Combinatorics With Ultrafilters ( , Steve, TWΘFS )
Combinatorics is full of results saying that functions on an infinite set are well-behaved infinitely much
of the time. An easy example of this is the Pigeonhole Principle: given a function f : N → X, for a
finite set X, no matter how crazy f is there is always some infinite set S ⊆ N on which f is constant –
that is, some hole winds up with infinitely many pigeons. A slightly trickier instance of this is Infinite
Ramsey’s Theorem for pairs: if f is a function which assigns 0 or 1 to each pair of distinct natural
numbers, there is some infinite set H such that any pair from H gets assigned the same color as any
other pair. (If you haven’t seen Ramsey’s Theorem, don’t worry — we’ll prove it in class.)

However, what if “infinite” just isn’t big enough? What if we want our function to be nicely behaved
on a really big set? For example, for a function f : N → X with X finite, maybe we want f to be
constant on a set which is not only infinite, but closed under finite sums. Can we always find such a
set – and if so, what’s the most ridiculous way we can prove it?

In this class we’ll do combinatorics using ultrafilters — bizarre, beautiful objects from the mysterious
land of set theory! Ultrafilters cannot even be proved to exist without the axiom of choice, but that
won’t stop us from using them to build big homogeneous sets. Oh, and we’ll also need to say the
words “compact space”, “topological semigroup” and “idempotent” a few times.

Homework: Recommended

Class format: Interactive lecture

Prerequisites: None.

History Of Math: The Origin Of Algebra ( , Neeraja Kulkarni , TWΘFS )
Often, the history of math is presented as a progressive evolution of ideas that culminate in the
(supposedly) enlightened views of the present day. We won’t do that in this course; instead we’ll read
some of the history of math focusing on the “discontinuities” or break points, by which I mean the
times at which new ways of thinking about math caused the old ways to be more or less abandoned.
We’ll try to explore how ancient mathematicians thought about math with a view to understanding
how they were different from the modern ones. Hopefully, this will give us some new perspectives
on present-day math. We’ll read extracts of writings by some of the following: Pythagoras, Plato,
Aristotle, Diophantus, Descartes, Newton, Wallis. We’ll focus on how each of the writers present
mathematical ideas, i.e. the kind of formal language used or the lack thereof; and why the writers
preferred their chosen mode of presentation.

Homework: Recommended

Class format: Interactive Lecture

Prerequisites: None.

Hyperbolic Geometry ( , Dan Zaharopol , TWΘFS )
“Out of nothing I have created a strange new universe.”
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So said János Bolyai, the creator of hyperbolic geometry, as is now immortalized on decades of
Mathcamp t-shirts. What he invented was a kind of geometry that is almost exactly like the Euclidean
geometry we all learn in school... but with one crucial difference that changes everything.

We’ll explore this geometry and learn how to work with it. It’s a strange place: the angles of a
triangle don’t actually add up to π, and in fact the area of a triangle is determined by its area! There
are more parallel lines than you can shake a stick at. It also has surprising and important connections
to other areas of math, such as the surfaces that can (surprisingly) be given a hyperbolic structure.
You’ll even see (with much waving of hands and many incantations of “I am not a physicist”) what
this has to do with the big bang and the expansion of the universe!

Homework: Optional

Class format: Interactive Lecture

Prerequisites: None

Smhtiroglalgorithms ( , Zach, TWΘFS )

[Yo, banana boy]! Did you take a [lonely Tylenol] for a mild headache after a camper falsely claimed
that zero is [never odd or even]? Did [some men interpret nine memos] to determine if the field trip
to [my gym] is full? ([No, it is open on one position].) [Did Hannah see bees? (Hannah did.)] [Do
geese see god]?

Learn efficient algorithms for searching and finding patterns in giant bodies of text, focused primarily
on locating long palindromes efficiently. Näıve algorithms on length-n strings require approximately
n2 time, which becomes increasingly infeasible as big data gets bigger and data-ier (think giant DNA
sequences, or the whole internet). We’ll study two methods that achieve runtimes proportional to n
instead of n2, and their extensions to related string-processing tasks.

Homework: Optional

Class format: Lecture

Prerequisites: This theoretical computer science class does not directly involve programming and does
not have a programming prerequisite, but we will assume some familiarity with foundational algorith-
mic concepts such as arrays and for-loops.

Trail Mix ( → , Mark, TWΘFS )
Is your mathematical hike getting a little too strenuous? Would you like to relax a bit with a class
that offers an unrelated topic every day, so you can pick and choose which days to attend, and that
does not expect you to do homework? If so, some Trail Mix may be just what you need to regain
energy. Individual descriptions of the four topics follow.

Trail Mix Day 1: The Prüfer Correspondence ( → ).
Suppose you have n points around a circle, with every pair of points connected by a line segment.

(If you like, you have the complete graph Kn.) Now you’re going to erase some of those line segments
so you end up with a tree, that is, so that you can still get from each point to each other point along
the remaining line segments, but in only one way. (This tree will be a spanning tree for Kn.) How
many different trees can you end up with? The answer is a surprisingly simple expression in n, and
we’ll find a combinatorial proof that is especially cool.

Prerequisites: None.
Class Format : Probably a bit of group work, as well as interactive lecture.

Trail Mix Day 2: Integration by Parts and the Wallis Product ( ).
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Integration by parts is one of the only two truly general techniques for finding antiderivatives that
are known (the other is integration by substitution). In this class you’ll see (or review) this method,
and encounter two of its applications: How to extend the factorial function, so that (1/2)! ends up
making sense (although the standard notation used for it is a bit different), and how to derive the
famous product formula

π

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · ,

which was first stated by John Wallis in 1655.

Prerequisites: Basic single-variable calculus.
Class Format : Interactive lecture.

Trail Mix Day 3: Perfect Numbers ( ).
Do you love 6 and 28? The ancient Greeks did, because each of these numbers is the sum of its own

divisors, not counting itself. Such integers are called perfect, and while a lot is known about them,
other things are not: Are there infinitely many? Are there any odd ones? Come hear about what is
known, and what perfect numbers have to do with the ongoing search for primes of a particular form,
called Mersenne primes — a search that has largely been carried out, with considerable success, by a
far-flung cooperative of individual “volunteer” computers.

Prerequisites: None
Class Format : Interactive lecture

Trail Mix Day 4: The Jacobian Determinant and
∞∑
n=1

1

n2
( )

How do you change variables in a multiple integral? In the “crash course” in week 1 we saw that
when you change to polar coordinates, a somewhat mysterious factor r is needed. This is a special
case of an important general fact involving a determinant of partial derivatives. We’ll see how and
roughly why this works; then we’ll use it to evaluate the famous sum

∞∑
n=1

1

n2
.

(You may well know the answer, but do you know a proof? If so, do you know a proof that doesn’t
require Fourier series or complex analysis?)

Prerequisites: Multivariable calculus (the crash course is plenty); some experience with determi-
nants.

Class Format : Interactive lecture

11:30 Classes

Combinatorial Game Theory ( , Laura Pierson, TWΘFS)
In Wythoff’s game, there are two piles of objects, and two players take turns taking either some
positive number of objects from one pile, or the same positive number from both piles. The goal is
to make the last move. In Euclid’s game, there are two numbers, and the two players take turns
subtracting some positive multiple of the smaller number from the larger number, with the goal again
being to make the last move. We’ll see how both these games have surprising solutions involving the
golden ratio! We may also explore other games of a similar flavor, time permitting. The class will be
fairly interactive, with students working as a class to figure out the solutions to the games.



MC2025 ◦ Week 4 ◦ Classes 6

Homework: Optional

Class format: Interactive lecture

Prerequisites: None

Differentiating The Undifferentiable ( , Sam, TWΘFS )
Your life as you know it has been a lie, you have been told that you can only differentiate a function if
it satisfies the limit definition. But I will show you that not only is this untrue, but that we can even
in some cases differentiate functions with jump discontinuities. “How?” I hear you scream, well, this is
done by considering our function as what is called a distribution. A distribution allows us to study the
behavior of how our function will act on other ’test functions’. An integration by parts kind of principle
allows us to extend the idea of derivatives to such distributions. Not only this, but we can rigorously
define certain mathematical objects, such as, the Dirac distribution (not a function), the principle
value and more. Furthermore, we can even extend transformations like the Fourier transform to such
distributions. Giving us a powerful tool to study all sorts of mathematics, from quantum mechanics,
to differential equations, to inverse problems. Please come to my class to discover and learn how to
use such wizardry.

Homework: Recommended

Class format: Interactive lecture and worksheets

Prerequisites: Convergence of sequences and series, continuity and differentiability of functions, inte-
gration by parts, open and closed sets, knowledge of point set topology would be beneficial but not
required.

Error-Correcting Codes ( , Narmada, TWΘFS )
Oh no!!!!!!! Nikita, the hat puzzle czar, has kidnapped 7 campers to play his evil game!!!!!!! Can the
campers guess the colours of their hats with high probability? Their only chance for survival is to
take this class and learn about error-correcting codes!!!!!!

In addition to saving you from Nikita, error-correcting codes show up everywhere from compact
discs to QR codes. In this class, we’ll study the mathematical foundation of linear error-correcting
codes: vector spaces over finite fields. We’ll define the perfect Hamming code that will save you from
Nikita, and, if time permits, look at constructions of my favourite binary perfect code: the Golay
code!

Homework: Recommended

Class format: Interactive lecture

Prerequisites: Intro linear algebra over Rn: know what subspaces, bases, dimension, and linear maps
are; Modular arithmetic. (You don’t need to know what a finite field is, but you do need to know
about Z/pZ when p is prime.)

Flat Surfaces And Billiards ( , Jenya Sapir , TWΘFS )
You might have seen some surfaces before, like donuts — sorry, coffee cups — sorry, I mean tori. You
might even have seen how to build a donut out of a square piece of paper, first by taping opposite sides
into a cylinder, then wrapping the ends of the cylinder together into a donut shape. (Let’s ignore the
fact that paper doesn’t actually like to bend that way. We’ll build a proper paper model of a donut
in this class.)

Now imagine we put a very small, very simple, rover on the surface of our donut. Unfortunately,
it is only programmed to go straight without turning (oops!) But still, will our rover get to see all
(or most) of the donut? Will it get trapped in an infinite loop? What are its possible trajectories?
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Amazingly, our rover’s possible paths are closely related to the possible paths of a billiard ball hit on
a (standard issue, frictionless) billiard table.

In this class, we will first study flat surfaces, that is, surfaces you can build by cutting shapes
out of paper, and gluing them together. Not just donuts, but more complicated surfaces with higher
genus — that is, more holes- like the surface of a pretzel. We will then try to understand the possible
geometries — shapes — we can create like this. And we will study the different kinds of straight line
paths we can have on these shapes. When do we have loops? When do the paths visit close to every
point? Can we get stuck?

Then, we will switch to studying paths on billiard tables. And not just rectangular billiard tables,
but other shapes, too, such as triangles, pentagons, and so on. And we will learn how we can sometimes
“unfold” a billiard table into a flat surface. (I’ll leave this process to your imagination, until we can
properly cover it in class!)

Homework: Recommended

Class format: Mostly group work, some lecture.

Prerequisites: None.

The Other Analytic Number Theory (p-adics) ( , Eric, TWΘFS )
While analytic number theory is a legit branch of math, and you might have learned about modular
forms in the other other analytic number theory in weeks 1 and 2, this class is about another different
analytically-flavoured branch of number theory! We’ll learn about p-adic analysis: a new lens with
which to tackle problems in number theory using tools from analysis and topology like power series
and compactness. The p-adic numbers are an alternative to the real numbers, where all triangles are
isoceles and the distance you travel on a hike is the same as the biggest single step you took.

We’ll use p-adic analysis to prove a theorem about the structure of linear recurrence sequences
(think Fibonacci). I really love this proof, here’s two reasons why. 1: the form of the theorem falls
out super naturally from the structure of the method we’ll end up using in a way that I think is super
interesting. 2: despite the statement of the theorem being purely about integers the only proofs known
to the human race involve p-adic numbers, which is what makes this such a great conduit through
which to learn about them!

Homework: Recommended

Class format: Mixture of interactive lectures and worksheets. My plan going in is that days 1 and 5
will mostly be interactive lectures, and days 2, 3, 4 will be worksheets which develop (respectively)
p-adic numbers, p-adic topology, and p-adic functions.

Prerequisites: Fluency with modular arithmetic: the statement a is invertible mod(n) iff gcd(a, n) =
1 should be comfortable. Comfort with the idea of defining a function by infinite series, ideally
you’ve seen power series representations of ex and log (x) before. We will use some facts from linear
algebra that were not covered in the intro class (Jordan normal form of matrices), but as long you are
comfortable with matrix multiplication you’ll be able to follow.

Two Cool Techniques Related To Exact Cover Problems ( , Riley W, TWΘFS )
How many ways are there to cover a 9 by 12 checkerboard with triominoes? Such a combinatorial
problem, where we need to find ways to create a partition of a large set using a family of subsets, is
called an exact cover problem. This problem is generally NP-complete, but there are certain techniques
that make solving them and learning about their solutions more feasible. As the name suggests, we
will look at two related ideas.

One method is Donald Knuth’s Algorithm X. The algorithm uses a clever idea for backtracking
called dancing links. For fans of linked lists and depth-first searches only! We will also learn about
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binary decision diagrams and how they can help select uniformly random solutions to combinatorial
problems.

Homework: Recommended

Class format: Interactive lecture

Prerequisites: Know common algorithms and data structures, including trees, recursion, depth-first-
search, backtracking.

1:30 Classes

Continuous Functional Calculus on Hilbert Spaces (over C): We Can Take The Square
Root Of A Function Now?! ( , Audrey, TWΘFS )
Using a bit of “spectral theory” (a sort of generalization of eigenvalues for infinite dimensional spaces)
we can figure out how to apply continuous functions to linear functions in a coherent way. We can
even ensure that these are in some sense “commutative” in the case where these are nice!

Homework: Recommended

Class format: Lecture

Prerequisites: Intro linear algebra — having a fairly solid grasp of vector spaces and linear functions.
Students may find it helpful to know what a Hilbert space is, but it is not required and will be defined.

How To Solve An NP-Complete Problem ( , Glenn, TWΘFS )
Do you remember Misha’s opening colloquium, on the very first day of Mathcamp? (It’s okay if you
don’t.) He described the Hamiltonian path problem, which if you could solve efficiently (or prove that
it cannot be solved efficiently), you would earn $1,000,000. It’s one of the Millenium Prize Problems,
equivalent to the P vs. NP problem, and Misha tried to convince you very strongly that this problem
is difficult to solve.

But actually, modern computer scientists now consider NP-complete problems like Hamiltonian
path actually kind of reasonable to solve! Although a problem with 3000 Boolean variables might
naively take 23000 attempts to try every possibility (for context, the heat death of the universe is
predicted to happen within about 2500 picoseconds), advancements in the last 20 years have allowed
programs called SAT solvers to solve most such instances that show up in practice in just a few
seconds. Companies like Google and Amazon are regularly using these SAT solvers for advanced
reasoning tasks like scheduling, resource allocation, and verifying security guarantees on code.

This class is about the theory and practice of SAT solving. Each day will focus on a different aspect,
building on top of previous days:

• What is SAT, and how to solve a variety of problems using SAT
• The DPLL and CDCL algorithms that form the foundation of all modern SAT solvers
• Using the Z3 solver, and a little bit of SMT solving
• How the Resolution proof system relates to CDCL
• Why despite their effectiveness in practice, all CDCL-based solvers must take exponential time
to prove the pigeonhole principle

Homework: Recommended

Class format: Interactive lecture

Prerequisites: None.

Infinite Trees ( , Susan, TWΘFS )
Last week we constructed an Aronszajn tree. This week our goal is to construct a Suslin tree! Come
see how introducing the world’s worst fortune teller into our Zermelo-Fraenkl set theory universe
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makes it possible to build a tree with uncountable height, no uncountable levels, and no uncountable
antichains.

Homework: Recommended

Class format: Interactive lecture

Prerequisites: Infinite Trees Week 1

Mathematical Concepts for Solving Puzzles ( → , Della, TWΘFS )
I have a puzzle for you! Draw a white or black circle in every cell, such that

(1) the black circles are connected (meaning you can get from any black circle to another using
only the cells with black circles, moving horizontally and vertically (not diagonally!)),

(2) the white circles are connected, and
(3) there is no 2 square with four circles of the same color.

This puzzle is hard! You can probably bash your way through it by trying lots of options until only
one works, but there’s a better way. By the end of this class, you will know some lemmas which make
short work of the puzzle.

The days of this class are all independent, except that the final day builds on all of the previous
days. Each day will have a new piece of math and (usually) a new puzzle genre or two, and you’ll
solve a series of puzzles and discover the math. So really this is five separate classes:

• MCSP: Planarity ( , TWΘFS)
• MCSP: Jordan curves I ( , TWΘFS)
• MCSP: Parity ( , TWΘFS)
• MCSP: Jordan curves II ( , TWΘFS)
• MCSP: Everything ( (+ per day you missed), TWΘFS )

Homework: Optional

Class format: Many campers solving puzzles

Prerequisites: None

Seasonal Infectious Disease Models ( , Kaia, TWΘFS )
Have you ever been watching a pandemic movie or a medical drama and heard reference to “R0”?

This is the basic reproductive number– the expected number of people patient zero will infect. If
R0 > 1, the infection is expected to cause an outbreak, and if R0 < 1, it’s expected to die out.
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But what exactly does this type of threshold quantity correspond to mathematically? Ordinary
differential equations are some of the oldest tools for modeling the spread of diseases, but they’re still
used all the time today!

We’ll talk about identifying and classifying equilibria of systems of differential equations, build and
analyze compartmental models that track classes like susceptible, infected, and recovered individuals,
and turn to our final question:

How can we understand diseases like the seasonal flu where parameters like the infection rate,
instead of being constant, vary periodically?

Homework: Recommended

Class format: Interactive lecture

Prerequisites: Derivatives, eigenvalues and eigenvectors

Colloquia

Hyperspaces of Compact Sets (Maya, Tuesday)
We are often interested in notions of “smallness” — to take some examples on the real line, we can
consider the sets which are countable, or that have measure 0, or are “meager”. Descriptive set
theorists use their superpowers to go one level up and look at the collection of small sets in a certain
hyperspace — and this gives us a lot of information. In this talk I will describe that hyperspace and
talk about a famous example: the sets of uniqueness.

Knots or Not (Audrey, Wednesday)
What is a knot, and how do we determine that two knots are the same or different? We will discuss
this, and in particular, look at the Jones polynomial. Vaughan Jones found a groundbreaking invariant
of knots by finding connections in seemingly unrelated areas of math, which earned him the Fields
Medal in 1990.

Random Number Generators (Neeraja Kulkarni, Friday)
In probability, we usually think of a random number as an instance of an unbiased random variable,
that is, as the output produced by a uniformly distributed random process. When we think of random
numbers this way, it’s impossible to know if a set of numbers were randomly generated without
understanding where they came from. However, common sense dictates that if the process to generate
these numbers is truly understood (and thus predictable), then the numbers could not be random.
This talk will begin with an exploration of what it really means to be random. Then we will see a
brief history of the algorithms used to generate so-called pseudorandom numbers.
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